skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Landry, Michael R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. none (Ed.)

    Two cohorts of Atlantic bluefin tuna (Thunnus thynnus) larvae were sampled in 2017 and 2018 during the peak of spawning in the Gulf of Mexico (GOM). We examined environmental variables, daily growth, otolith biometry and stable isotopes and found that the GOM18 cohort grew at faster rates, with larger and wider otoliths. Inter and intra-population analyses (deficient vs. optimal growth groups) were carried out for pre- and post-flexion developmental stages to determine maternal and trophodynamic influences on larval growth variability based on larval isotopic signatures, trophic niche sizes and their overlaps. For the pre-flexion stages in both years, the optimal growth groups had significantly lower δ15N, implying a direct relationship between growth potential and maternal inheritance. Optimal growth groups and stages for both years showed lower C:N ratios, reflecting a greater energy investment in growth. The results of this study illustrate the interannual transgenerational trophic plasticity of a spawning stock and its linkages to growth potential of their offsprings in the GOM.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Abstract

    Photosynthesis in the surface ocean and subsequent export of a fraction of this fixed carbon leads to carbon dioxide sequestration in the deep ocean. Ecological relationships among plankton functional groups and theoretical relationships between particle size and sinking rate suggest that carbon export from the euphotic zone is more efficient when communities are dominated by large organisms. However, this hypothesis has never been tested against measured size spectra spanning the >5 orders of magnitude found in plankton communities. Using data from five ocean regions (California Current Ecosystem, North Pacific subtropical gyre, Costa Rica Dome, Gulf of Mexico, and Southern Ocean subtropical front), we quantified carbon‐based plankton size spectra from heterotrophic bacteria to metazoan zooplankton (size class cutoffs varied slightly between regions) and their relationship to net primary production and sinking particle flux. Slopes of the normalized biomass size spectra (NBSS) varied from −1.6 to −1.2 (median slope of −1.4 equates to large 1–10 mm organisms having a biomass equal to only 7.6% of the biomass in small 1–10 μm organisms). Net primary production was positively correlated with the NBSS slope, with a particularly strong relationship in the microbial portion of the size spectra. While organic carbon export co‐varied with NBSS slope, we found only weak evidence that export efficiency is related to plankton community size spectra. Multi‐variate statistical analysis suggested that properties of the NBSS added no explanatory power over chlorophyll, primary production, and temperature. Rather, the results suggest that both plankton size spectra and carbon export increase with increasing system productivity.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  3. Picophytoplankton populations [Prochlorococcus,Synechococcus(SYN), and picoeukaryotes] are dominant primary producers in the open ocean and projected to become more important with climate change. Their fates can vary, however, with microbial food web complexities. In the California Current Ecosystem, picophytoplankton biomass and abundance peak in waters of intermediate productivity and decrease at higher production. Using experimental data from eight cruises crossing the pronounced CCE trophic gradient, we tested the hypothesis that these declines are driven by intensified grazing on heterotrophic bacteria (HBAC) passed to similarly sized picophytoplankton via shared predators. Results confirm previously observed distributions as well as significant increases in bacterial abundance, cell growth, and grazing mortality with primary production. Mortalities of picophytoplankton, however, diverge from the bacterial mortality trend such that relative grazing rates on SYN compared to HBAC decline by 12-fold between low and high productivity waters. The large shifts in mortality rate ratios for coexisting populations are not explained by size variability but rather suggest high selectivity of grazer assemblages or tightly coupled tradeoffs in microbial growth advantages and grazing vulnerabilities. These findings challenge the long-held view that protistan grazing mainly determines overall biomass of microbial communities while viruses uniquely regulate diversity by “killing the winners”.

     
    more » « less
  4. Abstract. The ability to constrain the mechanisms that transport organiccarbon into the deep ocean is complicated by the multiple physical,chemical, and ecological processes that intersect to create, transform, andtransport particles in the ocean. In this paper we develop andparameterize a data-assimilative model of the multiple pathways of thebiological carbon pump (NEMUROBCP). The mechanistic model is designedto represent sinking particle flux, active transport by vertically migratingzooplankton, and passive transport by subduction and vertical mixing, whilealso explicitly representing multiple biological and chemical propertiesmeasured directly in the field (including nutrients, phytoplankton andzooplankton taxa, carbon dioxide and oxygen, nitrogen isotopes, and234Thorium). Using 30 different data types (including standing stockand rate measurements related to nutrients, phytoplankton, zooplankton, andnon-living organic matter) from Lagrangian experiments conducted on 11cruises from four ocean regions, we conduct an objective statisticalparameterization of the model and generate 1 million different potentialparameter sets that are used for ensemble model simulations. The modelsimulates in situ parameters that were assimilated (net primary productionand gravitational particle flux) and parameters that were withheld(234Thorium and nitrogen isotopes) with reasonable accuracy. Modelresults show that gravitational flux of sinking particles and verticalmixing of organic matter from the euphotic zone are more importantbiological pump pathways than active transport by vertically migratingzooplankton. However, these processes are regionally variable, with sinkingparticles most important in oligotrophic areas of the Gulf of Mexico andCalifornia Current, sinking particles and vertical mixing roughly equivalentin productive coastal upwelling regions and the subtropical front in theSouthern Ocean, and active transport an important contributor in the easterntropical Pacific. We further find that mortality at depth is an importantcomponent of active transport when mesozooplankton biomass is high, but itis negligible in regions with low mesozooplankton biomass. Our results alsohighlight the high degree of uncertainty, particularly amongstmesozooplankton functional groups, that is derived from uncertainty in modelparameters. Indeed, variability in BCP pathways between simulations for aspecific location using different parameter sets (all with approximatelyequal misfit relative to observations) is comparable to variability in BCPpathways between regions. We discuss the implications of these results forother data-assimilation approaches and for studies that rely on non-ensemblemodel outputs. 
    more » « less
  5. Irigoien, Xabier (Ed.)
    Abstract Larval abundances of Atlantic bluefin tuna (ABT) in the Gulf of Mexico are currently utilized to inform future recruitment by providing a proxy for the spawning potential of western ABT stock. Inclusion of interannual variations in larval growth is a key advance needed to translate larval abundance to recruitment success. However, little is known about the drivers of growth variations during the first weeks of life. We sampled patches of western ABT larvae in 3–4 day Lagrangian experiments in May 2017 and 2018, and assessed age and growth rates from sagittal otoliths relative to size categories of zooplankton biomass and larval feeding behaviors from stomach contents. Growth rates were similar, on average, between patches (0.37 versus 0.39 mm d−1) but differed significantly through ontogeny and were correlated with a food limitation index, highlighting the importance of prey availability. Otolith increment widths were larger for postflexion stages in 2018, coincident with high feeding on preferred prey (mainly cladocerans) and presumably higher biomass of more favorable prey type. Faster growth reflected in the otolith microstructures may improve survival during the highly vulnerable larval stages of ABT, with direct implications for recruitment processes. 
    more » « less
  6. Abstract

    The uptake of3H‐labeled leucine into proteins, a widely used method for estimating bacterial carbon production (BCP), is suggested to underestimate or overestimate bacterial growth in the open ocean by a factor of 40 uncertainty. Meanwhile, an alternative BCP approach, by the dilution method, has untested concerns about potential overestimation of bacterial growth from dissolved substrates released by filtration. We compared BCPDiland BCPLeuestimates from three cruises across a broad trophic gradient, from offshore oligotrophy to coastal upwelling, in the California Current Ecosystem. Our initial analyses based on midday microscopical estimates of bacterial size and a priori assumptions of conversions relationships revealed a mean two‐fold difference in BCP estimates (BCPDilhigher), but no systematic bias between low and high productivity stations. BCPDiland BCPLeuboth demonstrated strong relationships with bacteria cell abundance. Reanalysis of results, involving a different cell carbon‐biovolume relationship and informed by forward angle light scatter from flow cytometry as a relative cell size index, demonstrated that BCPDiland BCPLeuare fully compatible, with a 1 : 1 fit for bacteria of 5 fg C cell−1. Based on these results and considering different strengths of the methods, the combined use of3H‐labeled leucine and dilution techniques provide strong mutually supportive constraints on bacterial biomass and production.

     
    more » « less