Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Acute infections can alter foraging and movement behaviors relevant to sociality and pathogen spread. However, few studies have directly examined how acute infections caused by directly transmitted pathogens influence host social preferences. While infected hosts often express sickness behaviors (e.g., lethargy) that can reduce social associations with conspecifics, enhanced sociality during infection might be favored in some systems if social grouping improves host survival of infection. Directly assaying social preferences of infected hosts is needed to elucidate potential changes in social preferences that may act as a form of behavioral tolerance (defined as using behavior to minimize fitness costs of infection). We tested how infection alters sociality in juvenile house finches (Haemorhous mexicanus), which are both highly gregarious and particularly susceptible to infection by the bacterial pathogenMycoplasma gallisepticum(MG). We inoculated 33 wild‐caught but captive‐held juvenile house finches with MG or media (sham control). At peak infection, birds were given a choice assay to assess preference for associating near a flock versus an empty cage. We then repeated this assay after all birds had recovered from infection. Infected birds were significantly more likely than controls to spend time associating with, and specifically foraging near, the flock. However, after infected birds had recovered from MG infection, there were no significant differences in the amount of time birds in each treatment spent with the flock. These results indicate augmented social preferences during active infection, potentially as a form of behavioral tolerance. Notably, infected birds showed strong social preferences regardless of variation in disease severity or pathogen loads, with 14/19 harboring high loads (5–6 log10copies of MG) at the time of the assay. Overall, our results show that infection with a directly transmitted pathogen can augment social preferences, with important implications for MG spread in natural populations.more » « less
-
McGraw, Elizabeth A. (Ed.)Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches ( Haemorhous mexicanus ) across the temporal invasion gradient of a recently emerged bacterial pathogen ( Mycoplasma gallisepticum ), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.more » « less
-
Bacterial communities in and on wild hosts are increasingly appreciated for their importance in host health. Through both direct and indirect interactions, bacteria lining vertebrate gut mucosa provide hosts protection against infectious pathogens, sometimes even in distal body regions through immune regulation. In house finches ( Haemorhous mexicanus ), the bacterial pathogen Mycoplasma gallisepticum (MG) causes conjunctivitis, with ocular inflammation mediated by pro- and anti-inflammatory cytokines and infection triggering MG-specific antibodies. Here, we tested the role of gut bacteria in host responses to MG by using oral antibiotics to perturb bacteria in the gut of captive house finches prior to experimental inoculation with MG. We found no clear support for an impact of gut bacterial disruption on conjunctival pathology, MG load, or plasma antibody levels. However, there was a non-significant trend for birds with intact gut communities to have greater conjunctival pathology, suggesting a possible impact of gut bacteria on pro-inflammatory cytokine stimulation. Using 16S bacterial rRNA amplicon sequencing, we found dramatic differences in cloacal bacterial community composition between captive, wild-caught house finches in our experiment and free-living finches from the same population, with lower bacterial richness and core communities composed of fewer genera in captive finches. We hypothesize that captivity may have affected the strength of results in this experiment, necessitating further study with this consideration. The abundance of anthropogenic impacts on wildlife and their bacterial communities, alongside the emergence and spread of infectious diseases, highlights the importance of studies addressing the role of commensal bacteria in health and disease, and the consequences of gut bacterial shifts on wild hosts.more » « less