- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lange, Stefan (2)
-
Balkovic, Juraj (1)
-
Castillo, Oscar (1)
-
Elliott, Joshua (1)
-
Faye, Babacar (1)
-
Folberth, Christian (1)
-
Foster, Ian (1)
-
Franke, James A. (1)
-
Fu, Bojie (1)
-
Fuchs, Kathrin (1)
-
Guarin, Jose R. (1)
-
Heinke, Jens (1)
-
Hoogenboom, Gerrit (1)
-
Iizumi, Toshichika (1)
-
Jain, Atul K. (1)
-
Jägermeyr, Jonas (1)
-
Kelly, David (1)
-
Khabarov, Nikolay (1)
-
Lin, Tzu-Shun (1)
-
Liu, Wenfeng (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Global aridification is projected to intensify. Yet, our knowledge of its potential impacts on species ranges remains limited. Here, we investigate global aridity velocity and its overlap with three sectors (natural protected areas, agricultural areas, and urban areas) and terrestrial biodiversity in historical (1979 through 2016) and future periods (2050 through 2099), with and without considering vegetation physiological response to rising CO2. Both agricultural and urban areas showed a mean drying velocity in history, although the concurrent global aridity velocity was on average +0.05/+0.20 km/yr−1(no CO2effects/with CO2effects; “+” denoting wetting). Moreover, in drylands, the shifts of vegetation greenness isolines were found to be significantly coupled with the tracks of aridity velocity. In the future, the aridity velocity in natural protected areas is projected to change from wetting to drying across RCP (representative concentration pathway) 2.6, RCP6.0, and RCP8.5 scenarios. When accounting for spatial distribution of terrestrial taxa (including plants, mammals, birds, and amphibians), the global aridity velocity would be -0.15/-0.02 km/yr−1(“-” denoting drying; historical), -0.12/-0.15 km/yr−1(RCP2.6), -0.36/-0.10 km/yr−1(RCP6.0), and -0.75/-0.29 km/yr−1(RCP8.5), with amphibians particularly negatively impacted. Under all scenarios, aridity velocity shows much higher multidirectionality than temperature velocity, which is mainly poleward. These results suggest that aridification risks may significantly influence the distribution of terrestrial species besides warming impacts and further impact the effectiveness of current protected areas in future, especially under RCP8.5, which best matches historical CO2emissions [C. R. Schwalmet al.,Proc. Natl. Acad. Sci. U.S.A.117, 19656–19657 (2020)].more » « less
-
Jägermeyr, Jonas; Müller, Christoph; Ruane, Alex C.; Elliott, Joshua; Balkovic, Juraj; Castillo, Oscar; Faye, Babacar; Foster, Ian; Folberth, Christian; Franke, James A.; et al (, Nature Food)
An official website of the United States government
