skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Langenbrunner, Baird"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical ascent area (Aa) and high cloud fraction (HCF) are projected to decrease with surface warming in most Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Perturbing deep convective parameters in the Community Atmosphere Model (CAM5) results in a similar spread and correlation between HCF andAaresponses to interannual warming compared to the CMIP5 ensemble, with a narrowerAacorresponding to greater HCF reduction. Perturbing cloud physics parameters produces a comparatively smaller range ofAaresponses to warming and a dissimilar HCF‐Aarelation to that in CMIP5; a narrowerAacorresponds to less HCF reduction, likely due to cloud radiative effects. A narrowing ofAacorresponds to a regime shift toward stronger precipitation in both experiments. We infer that model differences in deep convection parameterization likely play a greater role than differing cloud physics in determining the diverse responses ofAaand HCF to warming in CMIP5.

     
    more » « less