skip to main content


Search for: All records

Creators/Authors contains: "Langerhans, R_Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche‐related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species‐rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity – but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying the four major components of the concept of ecological opportunity.

     
    more » « less
  2. Abstract

    The aim of this study rests on three premises: (i) humans are altering ecosystems worldwide, (ii) environmental variation often influences the strength and nature of sexual selection, and (iii) sexual selection is largely responsible for rapid and divergent evolution of male genitalia. While each of these assertions has strong empirical support, no study has yet investigated their logical conclusion that human impacts on the environment might commonly drive rapid diversification of male genital morphology. We tested whether anthropogenic habitat fragmentation has resulted in rapid changes in the size, allometry, shape, and meristics of male genitalia in three native species of livebearing fishes (genus:Gambusia) inhabiting tidal creeks across six Bahamian islands. We found that genital shape and allometry consistently and repeatedly diverged in fragmented systems across all species and islands. Using a model selection framework, we identified three ecological consequences of fragmentation that apparently underlie observed morphological patterns: decreased predatory fish density, increased conspecific density, and reduced salinity. Our results demonstrate that human modifications to the environment can drive rapid and predictable divergence in male genitalia. Given the ubiquity of anthropogenic impacts on the environment, future research should evaluate the generality of our findings and potential consequences for reproductive isolation.

     
    more » « less