Synchronously pumped optical parametric oscillators (OPOs) are highly efficient sources of long-wavelength pulses and nonclassical light, making them invaluable for applications in spectroscopy, metrology, multi-photon microscopy, and quantum computation. Typical systems based on free-space cavities either operate non-degenerately, which limits their efficiency, or use active feedback control to achieve degenerate operation, which limits these systems to dedicated low-noise environments. In this work, we demonstrate a femtosecond monolithically integrated OPO. In contrast with bulk OPOs, our monolithic 10 GHz cavity, based on reverse-proton-exchanged lithium niobate, operates stably without active locking. By detuning the repetition rate of the free-running pump laser from the cavity free spectral range, we control the intracavity pulse dynamics and observe many of the operating regimes previously encountered in free-space degenerate OPOs, such as box-pulsing and quadratic bright-dark solitons (simultons), in addition to non-degenerate operation. When operated in the simulton regime and pumped with 125 fs pulses at 1 µm, this monolithic OPO chip outputs broadband sech2pulses (63 nm, 3 dB) with tens of milliwatts of average power.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Free, publicly-accessible full text available January 19, 2024
-
BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results inmore »Free, publicly-accessible full text available January 6, 2024
-
Abstract Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.
-
Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1–2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.
-
High-gain optical parametric amplification is an important nonlinear process used both as a source of coherent infrared light and as a source of nonclassical light. In this work, we experimentally demonstrate an approach to optical parametric amplification that enables extremely large parametric gains with low energy requirements. In conventional nonlinear media driven by femtosecond pulses, multiple dispersion orders limit the effective interaction length available for parametric amplification. Here, we use the dispersion engineering available in periodically poled thin-film lithium niobate nanowaveguides to eliminate several dispersion orders at once. The result is a quasi-static process; the large peak intensity associated with a short pump pulse can provide gain to signal photons without undergoing pulse distortion or temporal walk-off. We characterize the parametric gain available in these waveguides using optical parametric generation, where vacuum fluctuations are amplified to macroscopic intensities. In the unsaturated regime, we observe parametric gains as large as 71 dB (118 dB/cm) spanning 1700–2700 nm with pump energies of only 4 pJ. When driven with pulse energies
, we observe saturated parametric gains as large as 88 dB ( ). The devices shown heremore » -
Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of
. -
We discuss wavelength conversion of a selected signal spatial mode, which preserves its quantum state and does not disturb other signal spatial modes. We present the results for a lithium niobate waveguide and a few-mode-fiber.