- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ball, Zachary T (2)
-
Larkin, James O (2)
-
Segatori, Laura (2)
-
Arefeayne, Yafet (1)
-
Ball, Zachary T. (1)
-
Cheng, Zhihua (1)
-
Cherukuri, Paul (1)
-
Chyan, Yieu (1)
-
Jayanthi, Brianna (1)
-
Jones, Matthew R (1)
-
Larkin, James O. (1)
-
Mozden, Sarah C (1)
-
Tour, James M (1)
-
Zheng, Qingxin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hybrid materials that combine organic polymers and biomacromolecules offer unique opportunities for precisely controlling 3D chemical environments. Although biological or organic templates have been separately used to control the growth of inorganic nanoclusters, hybrid structures represent a relatively unexplored approach to tailoring nanocluster properties. Here, we demonstrate that a molecularly defined lysozyme–polymer resin material acts as a structural scaffold for the synthesis of copper nanoclusters (CuNCs) with well controlled size distributions. The resulting CuNCs have significantly enhanced fluorescence compared with syntheses based on polymeric or biological templates alone. The synergistic approach described here is appealing for the synthesis of biocompatible fluorescent labels with improved photostability.more » « less
-
Larkin, James O; Mozden, Sarah C; Chyan, Yieu; Zheng, Qingxin; Cherukuri, Paul; Tour, James M; Ball, Zachary T (, ACS Applied Materials & Interfaces)Low-temperature plasma is an emerging approach for the treatment of bacterial infections. Nonchemical treatments such as cold plasma offer potential solutions to antibiotic resistance. We investigated the use of laser-induced graphene as aninexpensive, lightweight, and portable electrode for generating cold plasma. At the same time, the mechanism or molecular mediators of cold plasma-induced antibacterial activity remain poorly understood. This study validates graphene as an efficient structure for producing therapeutic cold plasma, and this study also indicates that ozone is the primary mediator of antibacterial activity in graphene-mediated cold plasmas for bacterial growth under the conditions studied.more » « less
-
Larkin, James O.; Jayanthi, Brianna; Segatori, Laura; Ball, Zachary T. (, Biomacromolecules)
An official website of the United States government
