skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Larouche, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis The concept of modularity is fundamental to understanding the evolvability of morphological structures and is considered a central framework for the exploration of functionally and developmentally related subsets of anatomical traits. In this study, we explored evolutionary patterns of modularity and integration in the 4-bar linkage biomechanical system of the skull in the fish family Labridae (wrasses and parrotfish). We measured evolutionary modularity and rates of shape diversification of the skull partitions of three biomechanical 4-bar linkage systems using 205 species of wrasses (family: Labridae) and a three-dimensional geometric morphometrics data set of 200 coordinates. We found support for a two-module hypothesis on the family level that identifies the bones associated with the three linkages as being a module independent from a module formed by the remainder of the skull (neurocranium, nasals, premaxilla, and pharyngeal jaws). We tested the patterns of skull modularity for four tribes in wrasses: hypsigenyines, julidines, cheilines, and scarines. The hypsigenyine and julidine groups showed the same two-module hypothesis for Labridae, whereas cheilines supported a four-module hypothesis with the three linkages as independent modules relative to the remainder of the skull. Scarines showed increased modularization of skull elements, where each bone is its own module. Diversification rates of modules show that linkage modules have evolved at a faster net rate of shape change than the remainder of the skull, with cheilines and scarines exhibiting the highest rate of evolutionary shape change. We developed a metric of linkage planarity and found the oral jaw linkage system to exhibit high planarity, while the rest position of the hyoid linkage system exhibited increased three dimensionality. This study shows a strong link between phenotypic evolution and biomechanical systems, with modularity influencing rates of shape change in the evolution of the wrasse skull. 
    more » « less
  2. Abstract We present a dataset that quantifies body shape in three dimensions across the teleost phylogeny. Built by a team of researchers measuring easy-to-identify, functionally relevant traits on specimens at the Smithsonian National Museum of Natural History it contains data on 16,609 specimens from 6144 species across 394 families. Using phylogenetic comparative methods to analyze the dataset we describe the teleostean body shape morphospace and identify families with extraordinary rates of morphological evolution. Using log shape ratios, our preferred method of body-size correction, revealed that fish width is the primary axis of morphological evolution across teleosts, describing a continuum from narrow-bodied laterally compressed flatfishes to wide-bodied dorsoventrally flattened anglerfishes. Elongation is the secondary axis of morphological variation and occurs within the more narrow-bodied forms. This result highlights the importance of collecting shape on three dimensions when working across teleosts. Our analyses also uncovered the fastest rates of shape evolution within a clade formed by notothenioids and scorpaeniforms, which primarily thrive in cold waters and/or have benthic habits, along with freshwater elephantfishes, which as their name suggests, have a novel head and body shape. This unprecedented dataset of teleostean body shapes will enable the investigation of the factors that regulate shape diversification. Biomechanical principles, which relate body shape to performance and ecology, are one promising avenue for future research. 
    more » « less