skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Larsen, M_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Observations of coherent scatter from patchy sporadicElayers in the subauroral zone made with a 30‐MHz coherent scatter radar imager are presented. The quasiperiodic (QP) echoes are similar to what has been observed at middle latitudes but with some differences. The echoes arise from bands of scatterers aligned mainly northwest to southeast and propagating to the southwest. A notable difference from observations at middle latitudes is the appearance of secondary irregularities or braids oriented obliquely to the primary bands and propagating mainly northward along them. We present a spectral simulation of the patchy layers that describes neutral atmospheric dynamics with the incompressible Navier Stokes equations and plasma dynamics with an extended MHD model. The simulation is initialized with turning shears in the form of an Ekman spiral. Ekman‐type instability deforms the sporadicElayer through compressible and incompressible motion. The layer ultimately exhibits both the QP bands and the braids, consequences mainly of primary and secondary neutral dynamic instability. Vorticity due to dynamic instability is an important source of structuring in the sporadicElayer. 
    more » « less
  2. Abstract Observations of backscatter from field‐aligned plasma density irregularities in sporadicE(Es) layers made with a 30‐MHz coherent scatter radar imager in Ithaca, New York are presented and analyzed. The volume probed by the radar lies at approximately 54° geomagnetic latitude, under the midlatitude trough and at the extreme northern edge of the zone whereEslayers are prevalent. Nonetheless, the irregularities exhibit many of the characteristics of quasiperiodic echoes observed commonly at lower middle latitudes. These include a tendency to occur in elongated bands stretching from the northwest to southeast in the Northern hemisphere separated by tens of kilometers and propagating to the southwest. In addition, the irregularities were found to exhibit finer‐scale structures with secondary bands oriented nearly normally to the primary bands. We investigate the proposition that the primary bands are telltale ofEs‐layer structuring caused by neutral Kelvin Helmholtz (KH) instability in the lower thermosphere and that the secondary bands signify secondary KH instability. Results from a 3D numerical simulation of KH support this proposition. 
    more » « less
  3. Abstract Radar and sounding rocket observations of plasma irregularities in theF‐region ionosphere acquired on 19 June 2019 during NASA experiment Too WINDY on Kwajalein Atoll are presented. The experiment was conducted near local midnight during a period of low solar flux and quiet geomagnetic conditions. Plasma density irregularities were seen by the rocket and also in the incoherent scatter radar data to emerge and persist mainly in the topside. Density irregularities in the bottomside remained very small by comparison throughout the observations. Zonal plasma drifts measured by the rocket were highly structured in the topside. Patches of coherent scatter entrained in the large‐scale topside density irregularities appeared to propagate slowly westward in a narrow flow channel detected by the rocket. Broadband ELF emissions were also detected in the topside. Some of the characteristics of the topside irregularities are typical of postsunset equatorialF‐region irregularities observed frequently by coherent scatter radars, and some of the common features in the coherent scatter database are reviewed. Two scenarios that have been proposed to account for postmidnight spreadFare tested computationally. One involves unseasonably large background zonal electric fields, and the other involves forcing from below by neutral waves and turbulence. Neither scenario appears to be able to account for the Too WINDY observations and the preponderance of topside irregularities without bottomside precursors in particular. 
    more » « less
  4. Abstract The Pedersen component of the Lorentz force produces an acceleration that is generally in the zonal direction in much of the dawn and dusk sectors in the auroral oval. During geomagnetically disturbed conditions, as the neutral flow begins to accelerate through the ion drag force and the flow speeds increase, a balance develops in the meridional direction between the Coriolis, curvature, and pressure gradient forces, which are dominant in the lower thermosphere. The gradient wind equation that describes this balance predicts that the cyclonic flow on the dawn side is limited to the so‐called regular solution, which has a maximum value of twice the geostrophic wind speed. The anticyclonic flow on the dusk side, on the other hand, can satisfy either the regular or anomalous solution with a transition at twice the geostrophic wind speed. The anomalous flow solutions have wind speeds significantly greater than the transition value, but are limited by the inertial wind value, that is, the value that corresponds to a balance between the curvature and Coriolis forces. The analysis is carried out to show this result, which indicates that a significant quantitative asymmetry is expected between the dawn‐ and dusk‐side flow, as is observed and has been shown in both observations and a number of numerical modeling studies. Implications for the wind distribution of perturbed pressure gradients and inertial instability are discussed. 
    more » « less