- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chung, Hee-Suk (2)
-
Jung, Yeonwoong (2)
-
Ko, Tae-Jun (2)
-
Larsson, J. Andreas (2)
-
Sattar, Shahid (2)
-
Shawkat, Mashiyat Sumaiya (2)
-
Bae, Tae-Sung (1)
-
Chowdhury, Tanvir Ahmed (1)
-
Gil, Jaeyoung (1)
-
Han, Sang Sub (1)
-
Jung, YounJoon (1)
-
Noh, Chanwoo (1)
-
Oh, Kyu Hwan (1)
-
Okogbue, Emmanuel (1)
-
Wang, Mengjing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)2D PtTe 2 layers, a relatively new class of 2D crystals, have unique band structure and remarkably high electrical conductivity promising for emergent opto-electronics. This intrinsic superiority can be further leveraged toward practical device applications by merging them with mature 3D semiconductors, which has remained largely unexplored. Herein, we explored 2D/3D heterojunction devices by directly growing large-area (>cm 2 ) 2D PtTe 2 layers on Si wafers using a low-temperature CVD method and unveiled their superior opto-electrical characteristics. The devices exhibited excellent Schottky transport characteristics essential for high-performance photovoltaics and photodetection, i.e. , well-balanced combination of high photodetectivity (>10 13 Jones), small photo-responsiveness time (∼1 μs), high current rectification ratio (>10 5 ), and water super-hydrophobicity driven photovoltaic improvement (>300%). These performances were identified to be superior to those of previously explored 2D/3D or 2D layer-based devices with much smaller junction areas, and their underlying principles were confirmed by DFT calculations.more » « less
-
Wang, Mengjing; Ko, Tae-Jun; Shawkat, Mashiyat Sumaiya; Han, Sang Sub; Okogbue, Emmanuel; Chung, Hee-Suk; Bae, Tae-Sung; Sattar, Shahid; Gil, Jaeyoung; Noh, Chanwoo; et al (, ACS Applied Materials & Interfaces)
An official website of the United States government
