skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laskar, F_I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The geomagnetic storm on February 3, 2022 caused the loss of 38 Starlink satellites of Space‐X. The Global‐scale Observations of the Limb and Disk (GOLD) observations and Multi‐Scale Atmosphere Geospace Environment (MAGE) model simulations are utilized to investigate the thermospheric composition responses to the Space‐X storm. The percentage difference of the GOLD observed thermospheric O and N2column density ratio (∑O/N2) between the storm time (February 3, Day‐of‐Year [DOY] 34) and quiet time (DOY 32) shows a depletion region in the local noon sector mid‐high latitudes in the southern hemisphere, which corresponds to the east side of GOLD field‐of‐view (FOV). This is different from the classic theory of thermospheric composition disturbance during geomagnetic storms, under which the ∑O/N2depletion is usually generated at local midnight and high latitudes, and thus, appear on the west side of GOLD FOV. MAGE simulations reproduce the observations qualitatively and indicate that the ∑O/N2depletion is formed due to strong upwelling in the local morning caused by strong Joule heating. Interestingly, enhanced equatorward winds appear near local midnight, but also in the local morning sector, which transports ∑O/N2depletion equatorward. The depletion corotates toward the local afternoon and is observed in the GOLD FOV. The equatorward winds in the local morning are due to the ion‐neutral coupling under the conditions of a dominant positive interplanetary magnetic field east‐west component (By) during the storm. 
    more » « less