skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Latha, Aparaajitha Gomathinayakam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Optical Network Emulation (ONE) engine is a real-time, multi-container software platform designed to model and emulate open optical transport networks with realistic fidelity. This paper introduces an enhanced version of the ONE engine that integrates a distributed implementation of a Gaussian Noise (GN) model for estimating nonlinear interference (NLI) in wavelength division multiplexing (WDM) systems. The inclusion of the GN model enables more realistic emulation of nonlinear signal degradation across diverse link configurations and operating conditions. The enhanced ONE package is then used to document the model’s impact on system performance under varying transmission conditions, including signal launched power and increased spectral loading. With this upgrade, the ONE engine expands its utility for research, development, and education, providing a scalable and flexible environment for testing physical-layer impairments and control strategies in software-defined optical networks. 
    more » « less
    Free, publicly-accessible full text available July 6, 2026
  2. The Optical Network Emulation (ONE) engine is a software tool that offers students the opportunity to learn how to control and operate open optical (wavelength division multiplexing) transport networks, such as those based on the Open ROADM MSA standards. This paper describes multiple modelling techniques that are implemented in the ONE engine to represent the signal power spectral density at any link/fiber section of the emulated transport network. These techniques make use of polynomial fitting and deconvolution computation methods. 
    more » « less