In this article, a compact multiband antenna design and analysis is presented with a view of ensuring efficient uplink/downlink communications at the same time from a single antenna for CubeSat applications. This design shares the aperture of an S-band slot antenna to accommodate a square patch antenna operating in the X-band. Shared aperture antennas, along with an air gap and dielectric loading, provided good gain in both frequency bands. The S-band patch had an S11 = −10 dB bandwidth of 30 MHz (2013–2043 MHz, 1.5%), and the X-band antenna demonstrated a bandwidth of 210 MHz (8320–8530 MHz, 2.5%). The Axial Ratio (<3 dB) bandwidth of the slot antenna in the S-band is 7 MHz (2013–2020 MHz, 0.35%), and it is 67 MHz (8433–8500 MHz, 0.8%) in the case of patch antenna in the X-band. While the maximum gain in the S-band reached 7.7 dBic, in the X-band, the peak gain was 12.8 dBic. This performance comparison study shows that the antenna is advantageous in terms of high gain, maintains circular polarization over a wideband, and can replace two antennas needed in CubeSats for uplink/downlink, which essentially saves space.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
This article presents the design and analysis of a low profile double-negative (DNG) metamaterial unit structure for 5G mmWave (millimeter wave) applications. The structure, comprised of double-slotted rectangular ring patches, experiences the peak current value near the magnetic resonance, causing the metamaterial to resonate at 28 GHz where it exhibits negative effective permittivity and permeability. The 3.05 mm × 2.85 mm compact structure is designed over a substrate Rogers RT/Duroid 5880 to attain better effective medium ratio (EMR) in the 5G frequency range (27.1–29.2 GHz). A rigorous parametric study is conducted to obtain the proposed design. Full-wave electromagnetic simulation software tools CST and HFSS are used to generate the scattering parameters for the analysis. The Nicolson–Ross–Wier method is used to observe the negative effective permittivity and permeability. In addition, different output quantities, e.g., surface current and electric and magnetic field distribution, are investigated. The structure is further tested with 1 × 2, 2 × 2, and 4 × 4 arrays, where the results show adequate agreement to be considered for 5G mmWave applications.
-
This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands.