Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2024
-
Abstract We present estimates of line-of-sight distortion fields derived from the 95 and 150 GHz data taken by BICEP2, BICEP3, and the Keck Array up to the 2018 observing season, leading to cosmological constraints and a study of instrumental and astrophysical systematics. Cosmological constraints are derived from three of the distortion fields concerning gravitational lensing from large-scale structure, polarization rotation from magnetic fields or an axion-like field, and the screening effect of patchy reionization. We measure an amplitude of the lensing power spectrum
. We constrain polarization rotation, expressed as the coupling constant of a Chern–Simons electromagnetic termg a γ ≤ 2.6 × 10−2/H I , whereH I is the inflationary Hubble parameter, and an amplitude of primordial magnetic fields smoothed over 1 MpcB 1Mpc≤ 6.6 nG at 95 GHz. We constrain the rms of optical depth fluctuations in a simple “crinkly surface” model of patchy reionization, findingA τ < 0.19 (2σ ) for the coherence scale ofL c = 100. We show that all of the distortion fields of the 95 and 150 GHz polarization maps are consistent with simulations including lensed ΛCDM, dust, and noise, with no evidence for instrumental systematics. In some cases, theEB andTB quadratic estimators presented here are more sensitive than our previous map-based null tests at identifying and rejecting spuriousB -modes that might arise from instrumental effects. Finally, we verify that the standard deprojection filtering in the BICEP/Keck data processing is effective at removing temperature to polarization leakage. -
Abstract An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations.
-
Abstract Sparse wide‐angle seismic profiling supported by coincident reflection imaging has been instrumental for advancing our knowledge about rifted margins. Nevertheless, features of critical importance for understanding rifting processes have been poorly resolved. We derive a high‐resolution velocity model by applying full waveform inversion to the dense OETR‐2009 wide‐angle seismic profile crossing the northeastern Nova Scotian margin. We then create a coincident reflection image by prestack depth migrating the multichannel seismic data. This allows for the first detailed interpretation of the structures related to the final stages of continental breakup and incipient oceanic accretion at the Eastern North America Margin. Our interpretation includes a hyperextended continental domain overlying partially serpentinized mantle, followed by a 10‐km‐wide domain consisting of a continental block surrounded by layered and bright reflectors indicative of magmatic extrusions. A major fault, representing the continent‐ocean boundary, marks a sharp seaward transition to a 16‐km‐wide domain characterized by smoother basement with chaotic reflectors, where no continental materials are present and a 3‐km‐thick embryonic oceanic crust overlying partially serpentinized mantle is created by the breakup magmatism. Further seaward, thin oceanic crust overlies the serpentinized mantle suggesting magma‐poor oceanic spreading with variable magma supply as determined from variable basement topography, 2–4 km thick volcanic layer, and magnetic anomalies. Our results demonstrate that magmatism played an important role in the lithospheric breakup of the area crossed by the OETR‐2009 profile. Considering that the northeastern Nova Scotian margin has been classified as amagmatic, large margin‐parallel variations in magma supply likely characterize a single rift segment.
-
Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon-noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.more » « less
-
Abstract We characterize Galactic dust filaments by correlating BICEP/Keck and Planck data with polarization templates based on neutral hydrogen (H
i ) observations. Dust polarization is important for both our understanding of astrophysical processes in the interstellar medium (ISM) and the search for primordial gravitational waves in the cosmic microwave background (CMB). In the diffuse ISM, Hi is strongly correlated with the dust and partly organized into filaments that are aligned with the local magnetic field. We analyze the deep BICEP/Keck data at 95, 150, and 220 GHz, over the low-column-density region of sky where BICEP/Keck has set the best limits on primordial gravitational waves. We separate the Hi emission into distinct velocity components and detect dust polarization correlated with the local Galactic Hi but not with the Hi associated with Magellanic Streami . We present a robust, multifrequency detection of polarized dust emission correlated with the filamentary Hi morphology template down to 95 GHz. For assessing its utility for foreground cleaning, we report that the Hi morphology template correlates inB modes at a ∼10%–65% level over the multipole range 20 <ℓ < 200 with the BICEP/Keck maps, which contain contributions from dust, CMB, and noise components. We measure the spectral index of the filamentary dust component spectral energy distribution to beβ = 1.54 ± 0.13. We find no evidence for decorrelation in this region between the filaments and the rest of the dust field or from the inclusion of dust associated with the intermediate velocity Hi . Finally, we explore the morphological parameter space in the Hi -based filamentary model. -
Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.more » « lessFree, publicly-accessible full text available May 11, 2024
-
For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale B-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio r. It particularly includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model (ΛCDM+dust+synchrotron+noise+r) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields σ(r)=0.009. The inference of r from our baseline model is tightened to r0.05=0.014+0.010−0.011 and r0.05<0.036 at 95% confidence, meaning that the BICEP/Keck B-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach σ(r)≲0.003 using data up to 2027.more » « less
-
The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of ∼32,000 detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments.more » « less