Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present Pasado, a technique for synthesizing precise static analyzers for Automatic Differentiation. Our technique allows one to automatically construct a static analyzer specialized for the Chain Rule, Product Rule, and Quotient Rule computations for Automatic Differentiation in a way that abstracts all of the nonlinear operations of each respective rule simultaneously. By directly synthesizing an abstract transformer for the composite expressions of these 3 most common rules of AD, we are able to obtain significant precision improvement compared to prior works which compose standard abstract transformers together suboptimally. We prove our synthesized static analyzers sound and additionally demonstrate the generality of our approach by instantiating these AD static analyzers with different nonlinear functions, different abstract domains (both intervals and zonotopes) and both forward-mode and reverse-mode AD. We evaluate Pasado on multiple case studies, namely soundly computing bounds on a neural network’s local Lipschitz constant, soundly bounding the sensitivities of financial models, certifying monotonicity, and lastly, bounding sensitivities of the solutions of differential equations from climate science and chemistry for verified ranges of initial conditions and parameters. The local Lipschitz constants computed by Pasado on our largest CNN are up to 2750× more precise compared to the existing state-of-the-art zonotope analysis. The bounds obtained on the sensitivities of the climate, chemical, and financial differential equation solutions are between 1.31 − 2.81× more precise (on average) compared to a state-of-the-art zonotope analysis.more » « less
-
Geometric image transformations that arise in the real world, such as scaling and rotation, have been shown to easily deceive deep neural networks (DNNs). Hence, training DNNs to be certifiably robust to these perturbations is critical. However, no prior work has been able to incorporate the objective of deterministic certified robustness against geometric transformations into the training procedure, as existing verifiers are exceedingly slow. To address these challenges, we propose the first provable defense for deterministic certified geometric robustness. Our framework leverages a novel GPU-optimized verifier that can certify images between 60× to 42,600× faster than existing geometric robustness verifiers, and thus unlike existing works, is fast enough for use in training. Across multiple datasets, our results show that networks trained via our framework consistently achieve state-of-the-art deterministic certified geometric robustness and clean accuracy. Furthermore, for the first time, we verify the geometric robustness of a neural network for the challenging, real-world setting of autonomous driving.more » « less
-
We present a novel, general construction to abstractly interpret higher-order automatic differentiation (AD). Our construction allows one to instantiate an abstract interpreter for computing derivatives up to a chosen order. Furthermore, since our construction reduces the problem of abstractly reasoning about derivatives to abstractly reasoning about real-valued straight-line programs, it can be instantiated with almost any numerical abstract domain, both relational and non-relational. We formally establish the soundness of this construction. We implement our technique by instantiating our construction with both the non-relational interval domain and the relational zonotope domain to compute both first and higher-order derivatives. In the latter case, we are the first to apply a relational domain to automatic differentiation for abstracting higher-order derivatives, and hence we are also the first abstract interpretation work to track correlations across not only different variables, but different orders of derivatives. We evaluate these instantiations on multiple case studies, namely robustly explaining a neural network and more precisely computing a neural network’s Lipschitz constant. For robust interpretation, first and second derivatives computed via zonotope AD are up to 4.76× and 6.98× more precise, respectively, compared to interval AD. For Lipschitz certification, we obtain bounds that are up to 11,850× more precise with zonotopes, compared to the state-of-the-art interval-based tool.more » « less
-
We present a novel abstraction for bounding the Clarke Jacobian of a Lipschitz continuous, but not necessarily differentiable function over a local input region. To do so, we leverage a novel abstract domain built upon dual numbers, adapted to soundly over-approximate all first derivatives needed to compute the Clarke Jacobian. We formally prove that our novel forward-mode dual interval evaluation produces a sound, interval domain-based over-approximation of the true Clarke Jacobian for a given input region. Due to the generality of our formalism, we can compute and analyze interval Clarke Jacobians for a broader class of functions than previous works supported – specifically, arbitrary compositions of neural networks with Lipschitz, but non-differentiable perturbations. We implement our technique in a tool called DeepJ and evaluate it on multiple deep neural networks and non-differentiable input perturbations to showcase both the generality and scalability of our analysis. Concretely, we can obtain interval Clarke Jacobians to analyze Lipschitz robustness and local optimization landscapes of both fully-connected and convolutional neural networks for rotational, contrast variation, and haze perturbations, as well as their compositions.more » « less