skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lazarek, Lukas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Equipping an existing programming language with a gradual type system requires two major steps. The first and most visible one in academia is to add a notation for types and a type checking apparatus. The second, highly practical one is to provide a type veneer for the large number of existing untyped libraries; doing so enables typed components to import pieces of functionality and get their uses type-checked, without any changes to the libraries. When programmers create such typed veneers for libraries, they make mistakes that persist and cause trouble. The question is whether the academically investigated run-time checks for gradual type systems assist programmers with debugging such mistakes. This paper provides a first, surprising answer to this question via a rational-programmer investigation: run-time checks alone are typically less helpful than the safety checks of the underlying language. Combining Natural run-time checks with blame, however, provides significantly superior debugging hints.

     
    more » « less
  2. Programming language theoreticians develop blame assignment systems and prove blame theorems for gradually typed programming languages. Practical implementations of gradual typing almost completely ignore the idea of blame assignment. This contrast raises the question whether blame provides any value to the working programmer and poses the challenge of how to evaluate the effectiveness of blame assignment strategies. This paper contributes (1) the first evaluation method for blame assignment strategies and (2) the results from applying it to three different semantics for gradual typing. These results cast doubt on the theoretical effectiveness of blame in gradual typing. In most scenarios, strategies with imprecise blame assignment are as helpful to a rationally acting programmer as strategies with provably correct blame. 
    more » « less