skip to main content

Search for: All records

Creators/Authors contains: "LeVay, L.J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The five primary sites proposed for International Ocean Discovery Program (IODP) Expedition 395, which was postponed because of the COVID-19 pandemic, were cored during IODP Expedition 395C. The Expedition 395C operations, shipboard measurements, and sampling were adjusted to account for the absence of a sailing science party. The Expedition 395/395C objectives are (1) to investigate temporal variations in ocean crust generation at the Reykjanes Ridge and test hypotheses for the influence of Iceland mantle plume fluctuations on these processes, (2) to analyze sedimentation rates at the Björn and Gardar contourite drifts, as proxies for Cenozoic variations of North Atlantic deepwater circulation, and for uplift and subsidence of the Greenland-Scotland Ridge gateway related to plume activity, and (3) to analyze the alteration of oceanic crust and its interaction with seawater and sediments. During Expedition 395C, basalt cores were collected at four sites: U1554, U1555, U1562, and U1563. Sediment cores were also collected from these sites as well as from Site U1564, and casing was installed to 602 m at Site U1554. The amount of recovered cores, their preliminary descriptions, and the analyses of shipboard samples show that the results of Expedition 395C will fulfill a significant part of the Expedition 395more »objectives. Basalts were collected from two V-shaped ridge and trough pairs, which will allow the investigation of the variability in mantle source and temperature causing this ridge/trough pattern. Basalt cores span an expected age range of 2.8–13.9 Ma, which will allow us to investigate the hydrothermal weathering processes. Sediments from the Björn drift were cored to basement, along with the uppermost 600 m of sediments from the Gardar drift. The data provided by Expedition 395C are a major advancement in achieving the work of Expedition 395.« less
    Free, publicly-accessible full text available February 1, 2023
  2. X-ray fluorescence (XRF) core scanning was conducted on core sections from International Ocean Discovery Program Site U1474, located in the Natal Valley off the coast of South Africa. The data were collected at 2 mm resolution along the 255 m length of the splice, but this setting resulted in noisy data. This problem was addressed by applying a 10 point running sum on the XRF data prior to converting peak area to element intensities. This effectively integrates 10 measurements into 1, representing an average over 2 cm resolution, and significantly improves noise in the data. With 25 calibration samples, whose element concentrations were derived using inductively coupled plasma–optical emission spectrometry, the XRF measurements were converted to concentrations using a univariate log-ratio calibration method. The resulting concentrations of terrigenously derived major elements (Al, Si, K, Ti, and Fe) are anticorrelated with Ca concentrations, indicating the main control on sediment chemistry is the variable proportion of terrigenous to in situ produced carbonate material.
  3. International Ocean Discovery Program (IODP) Expedition 388 seeks to answer first-order questions about the tectonic, climatic, and biotic evolution of the Equatorial Atlantic Gateway (EAG). The scheduled drilling operations will target sequences of Late Cretaceous and Cenozoic sediments offshore northeast Brazil, just south of the theorized final opening point of the EAG. These sequences are accessible to conventional riserless drilling in the vicinity of the Pernambuco Plateau, part of the northeastern Brazilian continental shelf. This region was chosen to satisfy two key constraints: first, that some of the oldest oceanic crust of the equatorial Atlantic and overlying early postrift sediments are present at depths shallow enough to be recovered by riserless drilling, and second, Late Cretaceous and Paleogene sediments preserved on the Pernambuco Plateau are close enough to the continental margin and at shallow enough paleowater depths (<2000 m) to provide well-preserved organic biomarkers and calcareous microfossils for multiproxy studies of greenhouse climate states. New records in this region will allow us to address major questions in four key objectives: the early rift history of the equatorial Atlantic, the biogeochemistry of the restricted equatorial Atlantic, the long-term paleoceanography of the EAG, and the limits of tropical climates and ecosystems undermore »conditions of extreme warmth. Tackling these major questions with new drilling in the EAG region will advance our understanding of the long-term interactions between tectonics, oceanography, ocean biogeochemistry, and climate and the functioning of tropical ecosystems and climate during intervals of extreme warmth.« less
  4. International Ocean Discovery Program (IODP) Expedition 372 combined two research topics: actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL) and slow slip events on subduction faults (IODP Proposal 781A-Full). This expedition included a coring and logging-while-drilling (LWD) program for Proposal 841-APL and a LWD program for Proposal 781A-Full. The coring and observatory placement for Proposal 781A-Full were completed during Expedition 375. The Expedition 372A Proceedings volume focuses only on the results related to Proposal 841-APL. The results of the Hikurangi margin drilling are found in the Expedition 372B/375 Proceedings volume. Gas hydrates have long been suspected of being involved in seafloor failure. Not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, ice-like gas hydrate in sediment pores is generally thought to increase seafloor strength, which is confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may weaken and destabilize sediments, potentially causing submarine landslides. The Tuaheni Landslide Complex (TLC) on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinch-out of the base of gas hydrate stability on the seafloor. We therefore proposed thatmore »gas hydrate may be involved in creep-like deformation and presented several hypotheses that may link gas hydrates to slow deformation. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. Plans for Expedition 372A included a coring and LWD program to test our landslide hypotheses. Because of weather-related downtime, the gas hydrate–related program was reduced and we focused on a set of experiments at Site U1517 in the creeping part of the TLC. We conducted a LWD and coring program to 205 m below the seafloor through the TLC and the gas hydrate stability zone, followed by temperature and pressure tool deployments.« less
  5. Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structuralmore »character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: 1. Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; 2. Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and 3. Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.« less
  6. International Ocean Discovery Program (IODP) Expedition 372 combined two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL). Our study area on the Hikurangi margin, east of the coast of New Zealand, provided unique locations for addressing both research topics. SSEs at subduction zones are an enigmatic form of creeping fault behavior. They typically occur on subduction zones at depths beyond the capabilities of ocean floor drilling. However, at the northern Hikurangi subduction margin they are among the best-documented and shallowest on Earth. Here, SSEs may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. Geodetic data show that these SSEs recur about every 2 years and are associated with measurable seafloor displacement. The northern Hikurangi subduction margin thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior. Expedition 372 acquired logging-while-drilling (LWD) data at three subduction-focused sites to depths of 600, 650, and 750 meters below seafloor (mbsf), respectively. These include two sites (U1518 and U1519) above the plate interface fault that experiences SSEs and one site (U1520)more »in the subducting “inputs” sequence in the Hikurangi Trough, 15 km east of the plate boundary. Overall, we acquired excellent logging data and reached our target depths at two of these sites. Drilling and logging at Site U1520 did not reach the planned depth due to operational time constraints. These logging data will be augmented by coring and borehole observatories planned for IODP Expedition 375. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, ice-like gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may weaken and destabilize sediments, potentially causing submarine landslides. The Tuaheni Landslide Complex (TLC) on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinch-out of the base of gas hydrate stability on the seafloor. We therefore hypothesized that gas hydrate may be linked to creep-like deformation and presented several hypotheses that may link gas hydrates to slow deformation. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. Expedition 372 comprised a coring and LWD program to test our landslide hypotheses. Due to weather-related downtime, the gas hydrate-related program was reduced, and we focused on a set of experiments at Site U1517 in the creeping part of the TLC. We conducted a successful LWD and coring program to 205 mbsf, the latter with almost complete recovery, through the TLC and gas hydrate stability zone, followed by temperature and pressure tool deployments.« less
  7. International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into themore »South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal.« less
  8. International Ocean Discovery Program (IODP) Expedition 353 drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gas concentrations, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation above the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in keymore »regions where these signals are the strongest and best preserved.« less
  9. International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 my. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water intomore »the South Atlantic stimulates buoyancy anomalies that act as control mechanisms on the basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the sensitivity of the Agulhas Current to climatic changes during the Pliocene–Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that span from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal.« less
  10. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean models and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as a control mechanism on the basin-wide AMOC, with implications for convective activity in the North Atlantic and Northern Hemisphere climate. International Ocean Discovery Program (IODP) Expedition 361 aims to extend this work to periods of major ocean and climate restructuring during the Pliocene/Pleistocene to assess the role that the Agulhas Current and ensuing (interocean) marine heat and salt transports have played in shaping the regional- and global-scale ocean and climate development. This expedition will core six sites on the southeast African margin and Indian–Atlantic ocean gateway. Themore »primary sites are located between 416 and 3040 m water depths. The specific scientific objectives are • To assess the sensitivity of the Agulhas Current to changing climates of the Pliocene/Pleistocene, in association with transient to long-term changes of high-latitude climates, tropical heat budgets, and the monsoon system; • To reconstruct the dynamics of the Indian–Atlantic gateway circulation during such climate changes, in association with changing wind fields and migrating ocean fronts; • To examine the connection between Agulhas leakage and ensuing buoyancy transfer and shifts of the AMOC during major ocean and climate reorganizations during at least the last 5 My; and • To address the impact of Agulhas variability on southern Africa terrestrial climates and, notably, rainfall patterns and river runoff. Additionally, Expedition 361 will complete an intensive interstitial fluids program at four of the sites aimed at constraining the temperature, salinity, and density structure of the Last Glacial Maximum (LGM) deep ocean, from the bottom of the ocean to the base of the main thermocline, to address the processes that could fill the LGM ocean and control its circulation. Expedition 361 will seek to recover ~5200 m of sediment in total. The coring strategy will include the triple advanced piston corer system along with the extended core barrel coring system where required to reach target depths. Given the significant transit time required during the expedition (15.5 days), the coring schedule is tight and will require detailed operational planning and flexibility from the scientific party. The final operations plan, including the number of sites to be cored and/or logged, is contingent upon the R/V JOIDES Resolution operations schedule, operational risks, and the outcome of requests for territorial permission to occupy particular sites. All relevant IODP sampling and data policies will be adhered to during the expedition. Beyond the interstitial fluids program, shipboard sampling will be restricted to acquiring ephemeral data and to limited low-resolution sampling of parameters that may be critically affected by short-term core storage. Most sampling will be deferred to a postcruise sampling party that will take place at the Gulf Coast Repository in College Station, Texas (USA). A substantial onshore X-ray fluorescence scanning plan is anticipated and will be further developed in consultation with scientific participants.« less