Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The five primary sites proposed for International Ocean Discovery Program (IODP) Expedition 395, which was postponed because of the COVID-19 pandemic, were cored during IODP Expedition 395C. The Expedition 395C operations, shipboard measurements, and sampling were adjusted to account for the absence of a sailing science party. The Expedition 395/395C objectives are (1) to investigate temporal variations in ocean crust generation at the Reykjanes Ridge and test hypotheses for the influence of Iceland mantle plume fluctuations on these processes, (2) to analyze sedimentation rates at the Björn and Gardar contourite drifts, as proxies for Cenozoic variations of North Atlantic deepwater circulation, and for uplift and subsidence of the Greenland-Scotland Ridge gateway related to plume activity, and (3) to analyze the alteration of oceanic crust and its interaction with seawater and sediments. During Expedition 395C, basalt cores were collected at four sites: U1554, U1555, U1562, and U1563. Sediment cores were also collected from these sites as well as from Site U1564, and casing was installed to 602 m at Site U1554. The amount of recovered cores, their preliminary descriptions, and the analyses of shipboard samples show that the results of Expedition 395C will fulfill a significant part of the Expedition 395more »Free, publicly-accessible full text available February 1, 2023
-
X-ray fluorescence (XRF) core scanning was conducted on core sections from International Ocean Discovery Program Site U1474, located in the Natal Valley off the coast of South Africa. The data were collected at 2 mm resolution along the 255 m length of the splice, but this setting resulted in noisy data. This problem was addressed by applying a 10 point running sum on the XRF data prior to converting peak area to element intensities. This effectively integrates 10 measurements into 1, representing an average over 2 cm resolution, and significantly improves noise in the data. With 25 calibration samples, whose element concentrations were derived using inductively coupled plasma–optical emission spectrometry, the XRF measurements were converted to concentrations using a univariate log-ratio calibration method. The resulting concentrations of terrigenously derived major elements (Al, Si, K, Ti, and Fe) are anticorrelated with Ca concentrations, indicating the main control on sediment chemistry is the variable proportion of terrigenous to in situ produced carbonate material.
-
International Ocean Discovery Program (IODP) Expedition 388 seeks to answer first-order questions about the tectonic, climatic, and biotic evolution of the Equatorial Atlantic Gateway (EAG). The scheduled drilling operations will target sequences of Late Cretaceous and Cenozoic sediments offshore northeast Brazil, just south of the theorized final opening point of the EAG. These sequences are accessible to conventional riserless drilling in the vicinity of the Pernambuco Plateau, part of the northeastern Brazilian continental shelf. This region was chosen to satisfy two key constraints: first, that some of the oldest oceanic crust of the equatorial Atlantic and overlying early postrift sediments are present at depths shallow enough to be recovered by riserless drilling, and second, Late Cretaceous and Paleogene sediments preserved on the Pernambuco Plateau are close enough to the continental margin and at shallow enough paleowater depths (<2000 m) to provide well-preserved organic biomarkers and calcareous microfossils for multiproxy studies of greenhouse climate states. New records in this region will allow us to address major questions in four key objectives: the early rift history of the equatorial Atlantic, the biogeochemistry of the restricted equatorial Atlantic, the long-term paleoceanography of the EAG, and the limits of tropical climates and ecosystems undermore »
-
International Ocean Discovery Program (IODP) Expedition 372 combined two research topics: actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL) and slow slip events on subduction faults (IODP Proposal 781A-Full). This expedition included a coring and logging-while-drilling (LWD) program for Proposal 841-APL and a LWD program for Proposal 781A-Full. The coring and observatory placement for Proposal 781A-Full were completed during Expedition 375. The Expedition 372A Proceedings volume focuses only on the results related to Proposal 841-APL. The results of the Hikurangi margin drilling are found in the Expedition 372B/375 Proceedings volume. Gas hydrates have long been suspected of being involved in seafloor failure. Not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, ice-like gas hydrate in sediment pores is generally thought to increase seafloor strength, which is confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may weaken and destabilize sediments, potentially causing submarine landslides. The Tuaheni Landslide Complex (TLC) on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinch-out of the base of gas hydrate stability on the seafloor. We therefore proposed thatmore »
-
Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structuralmore »
-
International Ocean Discovery Program (IODP) Expedition 372 combined two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL). Our study area on the Hikurangi margin, east of the coast of New Zealand, provided unique locations for addressing both research topics. SSEs at subduction zones are an enigmatic form of creeping fault behavior. They typically occur on subduction zones at depths beyond the capabilities of ocean floor drilling. However, at the northern Hikurangi subduction margin they are among the best-documented and shallowest on Earth. Here, SSEs may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. Geodetic data show that these SSEs recur about every 2 years and are associated with measurable seafloor displacement. The northern Hikurangi subduction margin thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior. Expedition 372 acquired logging-while-drilling (LWD) data at three subduction-focused sites to depths of 600, 650, and 750 meters below seafloor (mbsf), respectively. These include two sites (U1518 and U1519) above the plate interface fault that experiences SSEs and one site (U1520)more »
-
International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into themore »
-
International Ocean Discovery Program (IODP) Expedition 353 drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gas concentrations, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation above the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in keymore »
-
International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 my. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water intomore »
-
The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean models and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as a control mechanism on the basin-wide AMOC, with implications for convective activity in the North Atlantic and Northern Hemisphere climate. International Ocean Discovery Program (IODP) Expedition 361 aims to extend this work to periods of major ocean and climate restructuring during the Pliocene/Pleistocene to assess the role that the Agulhas Current and ensuing (interocean) marine heat and salt transports have played in shaping the regional- and global-scale ocean and climate development. This expedition will core six sites on the southeast African margin and Indian–Atlantic ocean gateway. Themore »