- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Leandersson, Mats (2)
-
B_Guedes, Eduardo (1)
-
Borrmann, Horst (1)
-
Bostwick, Aaron (1)
-
Bradlyn, Barry (1)
-
Cacho, Cephise (1)
-
Caputo, Marco (1)
-
Checkelsky, Joseph_G (1)
-
Comin, Riccardo (1)
-
Crispino, Matteo (1)
-
Damascelli, Andrea (1)
-
Date, Mihir (1)
-
Dil, J Hugo (1)
-
Felser, Claudia (1)
-
Fujii, Jun (1)
-
Georges, Antoine (1)
-
Gorovikov, Sergey (1)
-
Grundner, Martin (1)
-
Hampel, Alexander (1)
-
Isobe, Masahiko (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electronic flat bands associated with quenched kinetic energy and heavy electron mass have attracted great interest for promoting strong electronic correlations and emergent phenomena such as high-temperature charge fractionalization and superconductivity. Intense experimental and theoretical research has been devoted to establishing the rich nontrivial metallic and heavy fermion phases intertwined with such localized electronic states. Here, we investigate the transition metal oxide spinel LiV2O4, an enigmatic heavy fermion compound lacking localizedforbital states. We use angle-resolved photoemission spectroscopy and dynamical mean-field theory to reveal a kind of correlation-induced flat band with suppressed interatomic electron hopping arising from intra-atomic Hund’s coupling. The appearance of heavy quasiparticles is ascribed to a proximate orbital-selective Mott state characterized by fluctuating local moments as evidenced by complementary magnetotransport measurements. The spectroscopic fingerprints of long-lived quasiparticles and their disappearance with increasing temperature further support the emergence of a high-temperature “bad” metal state observed in transport data. This work resolves a long-standing puzzle on the origin of heavy fermion behavior and unconventional transport in LiV2O4. Simultaneously, it opens a path to achieving flat bands through electronic interactions ind-orbital systems with geometrical frustration, potentially enabling the realization of exotic phases of matter such as the fractionalized Fermi liquids.more » « less
-
Krieger, Jonas A; Stolz, Samuel; Robredo, Iñigo; Manna, Kaustuv; McFarlane, Emily C; Date, Mihir; Pal, Banabir; Yang, Jiabao; B_Guedes, Eduardo; Dil, J Hugo; et al (, Nature Communications)Abstract Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking – a directional relationship between an electron’s spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.more » « less
An official website of the United States government
