skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lebo, Zachary_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Are the results of aerosol invigoration studies that neglect entrainment valid for diluted deep convective clouds? We address this question by applying an entraining parcel model to soundings from tropical and midlatitude convective environments, wherein pollution is assumed to increase parcel condensate retention. Invigoration of 5%–10% and <2% is possible in undiluted tropical and midlatitude parcels respectively when freezing is rapid. This occurs because the positive buoyancy contribution from freezing is larger than the negative buoyancy contribution from condensate loading, leading to positive net condensate contribution to buoyancy. However, aerosol‐induced weakening is more likely when realistic entrainment rates occur because water losses from entrainment more substantially reduce the latent heating relative to the loading contribution. This leads to larger net negative buoyancy contribution from condensates in polluted than in clean entraining parcels. Our results demonstrate that accounting for entrainment is critical in conceptual models of aerosol indirect effects in deep convection. 
    more » « less