- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Laflamme, Marc (2)
-
Bui, Thi_Hao (1)
-
Cumming, Vivien M. (1)
-
Gibson, Timothy M. (1)
-
Gibson, Timothy_M (1)
-
Halverson, Galen P. (1)
-
Halverson, Galen_P (1)
-
Lechte, Maxwell (1)
-
Lechte, Maxwell A. (1)
-
Maloney, Katie M. (1)
-
Maloney, Katie_M (1)
-
Millikin, Alexie E.G. (1)
-
Murphy, Jack G. (1)
-
Schiffbauer, James D. (1)
-
Schiffbauer, James_D (1)
-
Selby, David (1)
-
Wallace, Malcolm W. (1)
-
Xiao, Shuhai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tonian (ca. 1000–720 Ma) marine environments are hypothesised to have experienced major redox changes coinciding with the evolution and diversification of multicellular eukaryotes. In particular, the earliest Tonian stratigraphic record features the colonisation of benthic habitats by multicellular macroscopic algae, which would have been powerful ecosystem engineers that contributed to the oxygenation of the oceans and the reorganisation of biogeochemical cycles. However, the paleoredox context of this expansion of macroalgal habitats in Tonian nearshore marine environments remains uncertain due to limited well‐preserved fossils and stratigraphy. As such, the interdependent relationship between early complex life and ocean redox state is unclear. An assemblage of macrofossils including the chlorophyte macroalgaArchaeochaeta gunchowas recently discovered in the lower Mackenzie Mountains Supergroup in Yukon (Canada), which archives marine sedimentation from ca. 950–775 Ma, permitting investigation into environmental evolution coincident with eukaryotic ecosystem evolution and expansion. Here we present multi‐proxy geochemical data from the lower Mackenzie Mountains Supergroup to constrain the paleoredox environment within which these large benthic macroalgae thrived. Two transects show evidence for basin‐wide anoxic (ferruginous) oceanic conditions (i.e., high FeHR/FeT, low Fepy/FeHR), with muted redox‐sensitive trace metal enrichments and possible seasonal variability. However, the weathering of sulfide minerals in the studied samples may obscure geochemical signatures of euxinic conditions. These results suggest that macroalgae colonized shallow environments in an ocean that remained dominantly anoxic with limited evidence for oxygenation until ca. 850 Ma. Collectively, these geochemical results provide novel insights into the environmental conditions surrounding the evolution and expansion of benthic macroalgae and the eventual dominance of oxygenated oceanic conditions required for the later emergence of animals.more » « less
-
Maloney, Katie M.; Halverson, Galen P.; Schiffbauer, James D.; Xiao, Shuhai; Gibson, Timothy M.; Lechte, Maxwell A.; Cumming, Vivien M.; Millikin, Alexie E.G.; Murphy, Jack G.; Wallace, Malcolm W.; et al (, Geology)Abstract Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in freshwater environments in the early Proterozoic and diversified into marine environments by the Tonian Period, but early algal evolution is poorly reflected in the fossil record. Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outer-shelf marine facies of the ca. 950–900 Ma (Re-Os minimum age constraint = 898 ± 68 Ma) Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These fossils, variably preserved by iron oxides and clay minerals, represent two size classes. The larger forms feature unbranching thalli with uniform cells, differentiated cell walls, longitudinal striations, and probable holdfasts, whereas the smaller specimens display branching but no other diagnostic features. While the smaller population remains unresolved phylogenetically and may represent cyanobacteria, we interpret the larger fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based on their large size and presence of rib-like wall ornamentation. Considered as such, the latter are among the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores Creek fossils indicate that eukaryotic algae, including green algae, colonized marine environments by the early Neoproterozoic Era.more » « less