- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Yuzhi (3)
-
Gold, Avram (3)
-
Lei, Ziying (3)
-
Zhang, Yue (3)
-
Zhang, Zhenfa (3)
-
Armstrong, N. Cazimir (2)
-
Ault, Andrew P. (2)
-
Cooke, Madeline E. (2)
-
Ledsky, Isabel R. (2)
-
Surratt, Jason D. (2)
-
Armstrong, N Cazimir (1)
-
Ault, Andrew P (1)
-
Baumann, Karsten (1)
-
Buchenau, Nicolas A. (1)
-
Cooke, Madeline E (1)
-
Dibley, Monica Q. (1)
-
Fankhauser, Alison M (1)
-
Ledsky, Isabel R (1)
-
Lee, Jamy Y. (1)
-
McNeill, V Faye (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT: Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0−3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO4 2−). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO4 2− at pH values below the acid dissociation constant (pKa) of SO42− and bisulfate (HSO4−). The nucleophilicity of HSO4− is 100× lower than SO42−, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42−/HSO4 − equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.more » « less
-
Lei, Ziying; Chen, Yuzhi; Zhang, Yue; Cooke, Madeline E.; Ledsky, Isabel R.; Armstrong, N. Cazimir; Olson, Nicole E.; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; et al (, Environmental Science & Technology)
-
Cooke, Madeline E.; Armstrong, N. Cazimir; Lei, Ziying; Chen, Yuzhi; Waters, Cara M.; Zhang, Yue; Buchenau, Nicolas A.; Dibley, Monica Q.; Ledsky, Isabel R.; Szalkowski, Tessa; et al (, ACS Earth and Space Chemistry)
An official website of the United States government
