Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It has become well-established that strong outer radiation belt enhancements are due to wave-driven electron energization by whistler-mode chorus waves. However, in this study, we examine strong MeV electron injections on 10 July 2019 and find substantial evidence that such injections may be a crucial contributor to outer radiation belt enhancement events. For such an examination, it is essential to precisely separate temporal flux changes from spatial variations observed as Van Allen Probes move along their orbits. Employing a new “hourly snapshot” analysis approach, we discover unprecedented details of electron flux evolutions that suggest that for this event, the outer belt enhancement was not continuous but instead intermittent, mostly composed of 4 large discrete injection-driven flux increases. The injections appear as sharp flux increases when observed near apogee. Otherwise, by comparing hourly snapshots for different times, we infer injections and infer temporally stable fluxes between injections, despite strong and continuous chorus emission. The fast and intermittent electron flux growth successively extending earthwards implies cumulative outer belt enhancement via a series of repetitive inward transport associated with injection-induced electric fields.Free, publicly-accessible full text available March 1, 2024
-
Abstract The anomalous diffusion of resonant protons in parallel and perpendicular velocity space by kinetic Alfvén waves is discussed. The velocity diffusion coefficient is calculated by employing an autocorrelation function for proton trajectories. It is found that for protons resonant with the waves, the perpendicular diffusion coefficient decays away for a sufficiently long time, but parallel diffusion monotonically increases in time until it saturates at a certain level. This result indicates that a portion of resonant protons can undergo anomalous diffusion along the background magnetic field even if the intensity of the kinetic Alfvén wave is sufficiently low. The present findings imply that under suitable conditions, astrophysical charged-particle acceleration can take place in the parallel direction.