skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, David D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The numerical predictor-corrector guidance method with a linear bank angle parameterization has been widely applied to various atmospheric entry guidance problems. However, it has been found that the linear bank angle approach has limitations in satisfying the final state requirement of a specific type of atmospheric entry mission. In response, this paper proposes a novel bank angle parameterization based on a logistic function, which improves the energy preservation capability and increases the potential final altitude at the end of the entry phase. The paper also suggests a guideline to determine a guidance law activation point for better entry performance. Numerical simulations demonstrate that the proposed guidance scheme outperforms the linear bank profile approach and is suitable for future human Mars landing missions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026