skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Dohwan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microfluidic devices integrated with Coulter sensors have been widely used in counting and characterizing suspended particles. The electrodes in these devices are mostly arranged in a coplanar fashion due to a simple fabrication process and leads to non-uniform electric fields confined to the floor of the microfluidic channel. We have recently introduced a simple fabrication method that can effortlessly create parallel electrodes in microfluidic devices built with soft-lithography. In this paper, we theoretically and experimentally analyze the developed parallel-electrode Coulter sensor and compare its sensitivity with that of the Coulter sensor built on conventional coplanar electrodes. Both our simulation results and experiments with cell suspensions show that parallel-electrode Coulter sensor can provide as much as ~5× sensitivity improvement over conventional coplanar electrodes. 
    more » « less