Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Spinodoid architected materials have drawn significant attention due to their unique nature in stochasticity, aperiodicity, and bi-continuity. Compared to classic periodic truss-, beam-, and plate-based lattice architectures, spinodoids are insensitive to manufacturing defects, scalable for high-throughput production, functionally graded by tunable local properties, and material failure resistant due to low-curvature morphology. However, the design of spinodoids is often hindered by the curse of dimensionality with an extremely large design space of spinodoid types, material density, orientation, continuity, and anisotropy. From a design optimization perspective, while genetic algorithms are often beyond the reach of computing capacity, gradient-based topology optimization is challenged by the intricate mathematical derivation of gradient fields with respect to various spinodoid parameters. To address such challenges, we propose a data-driven multiscale topology optimization framework. Our framework reformulates the design variables of spinodoid materials as the parameters of neural networks, enabling automated computation of topological gradients. Additionally, it incorporates a Gaussian Process surrogate for spinodoid constitutive models, eliminating the need for repeated computational homogenization and enhancing the scalability of multiscale topology optimization. Compared to ‘black-box’ deep learning approaches, the proposed framework provides clear physical insights into material distribution. It explicitly reveals why anisotropic spinodoids with tailored orientations are favored in certain regions, while isotropic spinodoids are more suitable elsewhere. This interpretability helps to bridge the gap between data-driven design with mechanistic understanding. To this end, we test our design framework on several numerical experiments. We find our multiscale spinodoid designs with controllable anisotropy achieve better performance than single-scale isotropic counterparts, with clear physics interpretations.more » « lessFree, publicly-accessible full text available January 1, 2027
-
Free, publicly-accessible full text available February 1, 2027
-
Abstract In scientific machine learning (SciML), a key challenge is learning unknown, evolving physical processes and making predictions across spatio-temporal scales. For example, in real-world manufacturing problems like additive manufacturing, users adjust known machine settings while unknown environmental parameters simultaneously fluctuate. To make reliable predictions, it is desired for a model to not only capture long-range spatio-temporal interactions from data but also adapt to new and unknown environments; traditional machine learning models excel at the first task but often lack physical interpretability and struggle to generalize under varying environmental conditions. To tackle these challenges, we propose the attention-based spatio-temporal neural operator (ASNO), a novel architecture that combines separable attention mechanisms for spatial and temporal interactions and adapts to unseen physical parameters. Inspired by the backward differentiation formula, ASNO learns a transformer for temporal prediction and extrapolation and an attention-based neural operator for handling varying external loads, enhancing interpretability by isolating historical state contributions and external forces, enabling the discovery of underlying physical laws and generalizability to unseen physical environments. Empirical results on SciML benchmarks demonstrate that ASNO outperforms existing models, establishing its potential for engineering applications, physics discovery, and interpretable machine learning.more » « lessFree, publicly-accessible full text available November 6, 2026
-
Abstract In engineering design, global sensitivity analysis (GSA) is used for analyzing the effects of inputs on the system response and is commonly studied with analytical or surrogate models. However, such models fail to capture nonlinear behaviors in complex systems and involve several modeling assumptions. Besides model-focused methods, a data-driven GSA approach, rooted in interpretable machine learning, would also identify the relationships between system components. Moreover, a special need in engineering design extends beyond performing GSA for input variables individually, but instead evaluating the contributions of variable groups on the system response. In this article, we introduce a flexible, interpretable artificial neural network model to uncover individual as well as grouped global sensitivity indices for understanding complex physical interactions in engineering design problems. The proposed model allows the investigation of the main effects and second-order effects in GSA according to functional analysis of variance (FANOVA) decomposition. To draw a higher-level understanding, we further use the subset decomposition method to analyze the significance of the groups of input variables. Using the design of a programmable material system (PMS) as an example, we demonstrate the use of our approach for examining the impact of material, architecture, and stimulus variables as well as their interactions. This information lays the foundation for managing design space complexity, summarizing the relationships between system components, and deriving design guidelines for PMS development.more » « less
-
Metamaterials with functional responses can exhibit varying properties under different conditions (e.g., wave‐based responses or deformation‐induced property variation). This work addresses rapid inverse design of such metamaterials to meet target qualitative functional behaviors, a challenge due to its intractability and nonunique solutions. Unlike data‐intensive and noninterpretable deep‐learning‐based methods, this work proposes the random‐forest‐based interpretable generative inverse design (RIGID), a single‐shot inverse design method for fast generation of metamaterials with on‐demand functional behaviors. RIGID leverages the interpretability of a random forest‐based “design → response” forward model, eliminating the need for a more complex “response → design” inverse model. Based on the likelihood of target satisfaction derived from the trained random forest, one can sample a desired number of design solutions using Markov chain Monte Carlo methods. RIGID is validated on acoustic and optical metamaterial design problems, each with fewer than 250 training samples. Compared to the genetic algorithm‐based design generation approach, RIGID generates satisfactory solutions that cover a broader range of the design space, allowing for better consideration of additional figures of merit beyond target satisfaction. This work offers a new perspective on solving on‐demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design under small data constraints.more » « less
-
Abstract Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. The past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world,” “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a generative adversarial network-based design under uncertainty framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of (1) building a universal uncertainty quantification model compatible with both shape and topological designs, (2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and (3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performance after fabrication.more » « less
-
Abstract Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Often built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active learning-based data acquisition framework aiming to guide both diverse and task-aware data generation. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design of metamaterials: when a massive (∼O(104)) shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets are used to demonstrate the efficacy. Applicable to general image-based design representations, t-METASET could boost future advancements in data-driven design.more » « less
-
Abstract Multifunctional metamaterials (MMM) bear promise as next‐generation material platforms supporting miniaturization and customization. Despite many proof‐of‐concept demonstrations and the proliferation of deep learning assisted design, grand challenges of inverse design for MMM, especially those involving heterogeneous fields possibly subject to either mutual meta‐atom coupling or long‐range interactions, remain largely under‐explored. To this end, a data‐driven design framework is presented, which streamlines the inverse design of MMMs involving heterogeneous fields. A core enabler is implicit Fourier neural operator (IFNO), which predicts heterogeneous fields distributed across a metamaterial array, thus in general at odds with homogenization assumptions. Additionally, a standard formulation of inverse problem covering a broad class of MMMs is presented, together with gradient‐based multitask concurrent optimization identifying a set of Pareto‐optimal architecture‐stimulus (A‐S) pairs. Fourier multiclass blending is proposed to synthesize inter‐class meta‐atoms anchored on a set of geometric motifs, while enjoying training‐free dimension reduction and built‐it reconstruction. Interlocking the three pillars, the framework is validated for light‐by‐light programmable nanoantenna, whose design involves vast space jointly spanned by quasi‐freeform supercells, maneuverable incident phase distributions, and conflicting figure‐of‐merits (FoM) involving on‐demand localization patterns. Accommodating all the challenges, the framework can propel future advancements of MMM.more » « less
-
Abstract Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. Past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world”, “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a Generative Adversarial Network-based Design under Uncertainty Framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of 1) building a universal uncertainty quantification model compatible with both shape and topological designs, 2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and 3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performances after fabrication.more » « less
An official website of the United States government
