skip to main content

Search for: All records

Creators/Authors contains: "Lee, H. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic damping is a key metric for emerging technologies based on magnetic nanoparticles, such as spin torque memory and high-resolution biomagnetic imaging. Despite its importance, understanding of magnetic dissipation in nanoscale ferromagnets remains elusive, and the damping is often treated as a phenomenological constant. Here, we report the discovery of a giant frequency-dependent nonlinear damping that strongly alters the response of a nanoscale ferromagnet to spin torque and microwave magnetic field. This damping mechanism originates from three-magnon scattering that is strongly enhanced by geometric confinement of magnons in the nanomagnet. We show that the giant nonlinear damping can invert themore »effect of spin torque on a nanomagnet, leading to an unexpected current-induced enhancement of damping by an antidamping torque. Our work advances the understanding of magnetic dynamics in nanoscale ferromagnets and spin torque devices.« less
  2. Free, publicly-accessible full text available July 1, 2022
  3. Free, publicly-accessible full text available July 1, 2022
  4. Free, publicly-accessible full text available June 29, 2022
  5. Free, publicly-accessible full text available June 1, 2022
  6. Free, publicly-accessible full text available May 31, 2022
  7. Free, publicly-accessible full text available March 1, 2022
  8. Abstract We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systemsmore »of compact objects, that is binary neutron star, neutron star–black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of $$10^{5}, 10^{6}, 10^{7}\mathrm {\ Mpc}^3$$ 10 5 , 10 6 , 10 7 Mpc 3 for binary neutron star, neutron star–black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of $$1^{+12}_{-1}$$ 1 - 1 + 12 ( $$10^{+52}_{-10}$$ 10 - 10 + 52 ) for binary neutron star mergers, of $$0^{+19}_{-0}$$ 0 - 0 + 19 ( $$1^{+91}_{-1}$$ 1 - 1 + 91 ) for neutron star–black hole mergers, and $$17^{+22}_{-11}$$ 17 - 11 + 22 ( $$79^{+89}_{-44}$$ 79 - 44 + 89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.« less
  9. The major construction and initial-phase operation of a second-generation gravitational-wave detector, KAGRA, has been completed. The entire 3 km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at lowfrequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test runwas accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is called iKAGRA. In this paper, we summarize the construction of KAGRA, including a studymore »of the advantages and challenges of building an underground detector, and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.« less