skip to main content


Search for: All records

Creators/Authors contains: "Lee, H.Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. We report on a total of 1005 samples analyzed for major and trace element compositions from marine sediments drilled along the Hikurangi subduction zone and within the incoming Pacific plate. The samples are from International Ocean Discovery Program Expeditions 375 and 372; Integrated Ocean Drilling Program Expedition 329; Ocean Drilling Program Leg 181; and Deep Sea Drilling Project Leg 90. All 1005 samples, resulting in a total number of ~20,200 individual measurements, were analyzed for major element compositions with the electron microprobe. A subset of 419 samples, resulting in a total number of ~1820 individual glass shard analyses, were analyzed for trace element compositions using the laser ablation-inductively coupled plasma-mass spectrometer. In total, ~640 samples were identified as primary ash layers based on their homogeneous geochemistry, visual appearance in the core pictures, and high amount of volcanic glass. Based on the biostratigraphy presented in the cruise reports and subsequent work, we can distinguish between Quaternary- and Neogene-derived tephras. The tephra layers of Quaternary age are mostly of rhyolitic composition with occasional andesitic, dacitic, and trachytic glass shards. The Neogene tephras are mostly of basaltic andesite, andesitic, and rhyolitic composition, with a few basaltic and trachytic tephras. Tephras of both age groups follow the calc-alkaline series trend with a tendency to shift into the high-K calc-alkaline series for tephras with >70 wt% SiO2. 
    more » « less
  3. We present geochemical major and trace element glass data for tephra samples from International Ocean Discovery Program (IODP) Expeditions 349 and 367/368 from four drilling sites in the South China Sea. Overall, we obtained data for 55 samples and identified 46 as tephra layers, with dominant volcanic glass shards in the component inventory (in the 63–125 µ fraction). In total, we performed 720 single glass shard analyses using an electron microprobe for major element compositions, as well as 130 single glass shard analyses using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for trace element compositions. The compositions of the samples range from basaltic, (trachy-) andesitic to trachytic, and rhyolitic and fall mainly into the calc-alkaline and K-rich calc-alkaline magmatic series. One sample falls into the shoshonitic series. Tephras from Expedition 349 Site U1431 span the whole compositional range, whereas tephras from the other sites are limited to rhyolitic composition. Tephra ages, calculated applying sedimentation rates, range to ~2 Ma at Site U1431, ~0.8 Ma at Expedition 367 Site U1499, ~0.6 Ma at Expedition 368 Site U1501, and ~0.9 Ma at Expedition 368 Site U1505. 
    more » « less
  4. Abstract The COSINE-100 experiment is designed to test the DAMA experiment which claimed an observation of a dark matter signal from an annual modulation in their residual event rate. To measure the 1 %-level signal amplitude, it is crucial to control and monitor nearly all environmental quantities that might systematically mimic the signal. The environmental monitoring also helps ensure a stable operation of the experiment. Here, we describe the design and performance of the centralized environmental monitoring system for the COSINE-100 experiment. 
    more » « less