skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Heather"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by the study of the growth rate of the number of geodesics in flat surfaces with bounded lengths, we study generalizations of such problems for K3 surfaces. In one gener- alization, we give a result regarding the upper bound on the asymptotics of the number of classes of irreducible special Lagrangians in K3 surfaces with bounded period integrals. In another generalization, we give the exact leading term in the asymptotics of the number of Mukai vectors of semistable coherent sheaves on algebraic K3 surfaces with bounded central charges, with respect to generic Bridgeland stability conditions. 
    more » « less