skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Hoon Jeong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerous characterization techniques have been developed over the last century, which have advanced progress on the development of a variety of photovoltaic technologies. However, this multitude of techniques leads to increasing experimental costs and complexity. It would be useful to have an approach that does not require the time commitment or operation costs to directly learn and implement every new measurement technique. Herein, we explore several machine learning (ML) models that output complex materials parameters, such as electronic trap state density, solely using illuminated current-voltage curves. This greatly reduces both the complexity and cost of the characterization process. Current-voltage curves were chosen as the only input to our models because this type of measurement is relatively simple to perform and most photovoltaic research labs already collect this information on all devices. We compare several different ML network architectures, all of which are trained on experimental data from PbS colloidal quantum dot thin film solar cells. We predict values for underlying materials parameters and compare them to experimentally measured results. 
    more » « less