skip to main content

Search for: All records

Creators/Authors contains: "Lee, J. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order to explore the consequences of spin–orbit coupling on spin–phonon interactions in a set of chemically similar mixed metal oxides, we measured the infrared vibrational properties of Co4B2O9 (B = Nb, Ta) as a function of temperature and compared our findings with lattice dynamics calculations and several different models of spin–phonon coupling. Frequency vs temperature trends for the Co2+ shearing mode near 150 cm−1 reveal significant shifts across the magnetic ordering temperature that are especially large in relative terms. Bringing these results together and accounting for noncollinearity, we obtain spin–phonon coupling constants of −3.4 and −4.3 cm−1 for Co4Nb2O9 and the Ta analog, respectively. Analysis reveals that these coupling constants are derived from interlayer (rather than intralayer) exchange interactions and that the interlayer interactions contain competing antiferromagnetic and ferromagnetic contributions. At the same time, beyond-Heisenberg terms are minimized due to fortuitous symmetry considerations, different from most other 4d- and 5d-containing oxides. Comparison with other contemporary oxides shows that spin–phonon coupling in this family of materials is among the strongest ever reported, suggesting an origin for magnetoelectric coupling. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as “StomachSim”) to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis. 
    more » « less
  3. This paper reports on the first phase of research on a scholarship program VTAB (Vertical Transfers’ Access to the Baccalaureate) funded by a five-year grant from the National Science Foundation (NSF) that focuses on students who transfer at the 3rd year level from 2-year schools to the engineering and engineering technology BS programs at our university [1]. The goals of the program are: (i) to expand and diversify the engineering/technology workforce of the future, (ii) to develop linkages and articulations with 2-year schools and their S-STEM programs, (iii) to recruit, retain, and graduate 78 low-income students, and place them in industry or graduate schools, (iv) to generate knowledge about the program elements that can help other universities, and (v) to serve as a model for other universities to provide vertical transfer students access to the baccalaureate degree. 
    more » « less
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Free, publicly-accessible full text available April 1, 2024
  9. Free, publicly-accessible full text available March 1, 2024