- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Choi, In_Hyeok (1)
-
Choi, Woo_Seok (1)
-
Jeong, Do‐Gyeom (1)
-
Jeong, Seung_Gyo (1)
-
Lee, Jong_Seok (1)
-
Seo, Ambrose (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Artificial superlattices composed of perovskite oxides serves as an essential platform for engineering coherent phonon transport by redefining the lattice periodicity, which strongly influences the lattice‐coupled phase transitions in charge and spin degrees of freedom. However, previous methods of manipulating phonons have been limited to controlling the periodicity of superlattice, rather than utilizing complex mutual interactions that are prominent in transition metal oxides. In this study on oxide superlattices composed of ferromagnetic metallic SrRuO3and quantum paraelectric SrTiO3, phonon modulation by controlling the geometry of superlattice in atomic‐scale precision is realized, demonstrating the coherent phonon engineering using structural and magnetic phase transitions. By modulating the interface density, coherent‐incoherent crossover of the phonon transport at room temperature is observed, which is coupled with a change in interfacial structural continuity. Upon cooling, the close relation between phonon transport and multiple phase transitions is identified. In particular, the enhancement of the polar state in SrTiO3layer at ≈200 K leads to the weakening of phonon coherence and a further reduction of thermal conductivity in superlattices compared to the bulk limit. These findings provide a guide to developing future thermoelectric nanodevices by engineering the coherence of phonons via the design of complex oxide heterostructures.more » « less
An official website of the United States government
