skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Jongha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electronic devicesforrecording neuralactivityinthe nervoussyste m needto bescalableacrosslargespatialandte mporalscales whilealso providing millisecondandsingle-cellspatiote mporalresolution. H o w e v e r, e xi s ti n g hi g h- r e s ol u ti o n n e u r al r e c o r di n g d e vi c e s c a n n o t achievesi multaneousscalability on bothspatialandte mporallevels due toatrade-offbetweensensordensityand mechanicalflexibility. Here weintroduceathree-di mensional(3D)stackingi mplantableelectronic platfor m,basedonperfluorinateddielectricelasto mersandtissue-levelsoft multilayerelectrodes,thatenablesspatiote mporallyscalablesingle-cell neuralelectrophysiologyinthenervoussyste m. Ourelasto mersexhibit stable dielectric perfor mancefor overayearin physiologicalsolutions andare10,000ti messofterthanconventional plastic dielectrics. By leveragingthese uniquecharacteristics we developthe packaging of lithographednano metre-thickelectrodearraysina3Dconfiguration with across-sectionaldensityof7.6electrodesper100μ m2.Theresulting3D integrated multilayersoftelectrodearrayretainstissue-levelflexibility, reducingchronici m muneresponsesin mouse neuraltissues,and de monstratestheabilitytoreliablytrackelectricalactivityinthe mouse brain orspinalcord over months without disruptingani mal behaviour. 
    more » « less