skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Julianne E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined by the amplitude and phase profiles of the sound's pressure wave. These profiles typically are sculpted by deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths. Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator, a deceptively simple dynamical system with surprisingly complex phenomenology. 
    more » « less