Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents 2D feedback control and open loop 3D trajectories of heterogeneous chemically catalyzing Janus particles. Self-actuated particles have enormous implications for both in vivo and in vitro environments, which make them a diverse resource for a variety of medical and assembly applications. Janus particles, consisting of cobalt and platinum hemispheres, can self-propel in hydrogen peroxide solutions due to platinum’s catalyzation properties. These particles are directionally controlled using static magnetic fields produced from a triaxial approximate Helmholtz coil system. Since the magnetization direction of Janus particles is often heterogeneous, and thereby not consistent with the propulsion direction, this creates a unique opportunity to explore the motion effects of these particles under 2D feedback control and open loop 3D control. Using a modified closed loop controller, Janus particles with magnetization both closely aligned and greatly misaligned to the propulsion vectors, were instructed to perform complex trajectories. These trajectories were then compared between trials to measure both consistency and accuracy. The effects of increasing offset between the magnetization and propulsion vectors were also analyzed. The effects this heterogeneity had on 3D motion is also briefly discussed. It is our hope going forward to develop a 3D closed loop control system that can retroactively account for variations in the magnetization vector.more » « less
-
Abstract In this work, we present a step‐by‐step workflow for the fabrication of 2D hexagonal boron nitride (h‐BN) nanopores which are then used to sense holo‐human serum transferrin (hSTf) protein at pH ∼8 under applied voltages ranging from +100 mV to +800 mV. 2D nanopores are often used for DNA, however, there is a great void in the literature for single‐molecule protein sensing and this, to the best of our knowledge, is the first time where h‐BN—a material with large band‐gap, low dielectric constant, reduced parasitic capacitance and minimal charge transfer induced noise—is used for protein profiling. The corresponding Δ
G (change in pore conductance due to analyte translocation) profiles showed a bimodal Gaussian distribution where the lower and higher ΔG distributions were attributed to (pseudo‐) folded and unfolded conformations respectively. With increasing voltage, the voltage induced unfolding increased (evident by decrease in ΔG ) and plateaued after ∼400 mV of applied voltage. From the ΔG versus voltage profile corresponding to the pseudo‐folded state, we calculated the molecular radius of hSTf, and was found to be ∼3.1 nm which is in close concordance with the literature reported value of ∼3.25 nm.