- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmed, Syed N. (1)
-
Arulmoli, Janahan (1)
-
Botten, Giovanni A. (1)
-
Cody, Brent (1)
-
Cox, Sean (1)
-
Demetriou, Michael (1)
-
Flanagan, Lisa A. (1)
-
Jiang, Alan Y.L. (1)
-
Lee, Abraham P. (1)
-
Lee, Kayla (1)
-
Lee, Kayla R. (1)
-
McDonnell, Lisa P. (1)
-
Monuki, Edwin S. (1)
-
Nourse, Jamison L. (1)
-
Yale, Andrew R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family $$\mathcal {F}$$ of (real or complex) analytic functions, such that $$\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$$ is countable for every x . We strengthen Erdős’ result by proving that CH is equivalent to the existence of what we call sparse analytic systems of functions. We use such systems to construct, assuming CH, an equivalence relation $$\sim $$ on $$\mathbb {R}$$ such that any ‘analytic-anonymous’ attempt to predict the map $$x \mapsto [x]_\sim $$ must fail almost everywhere. This provides a consistently negative answer to a question of Bajpai-Velleman [2].more » « less
-
Yale, Andrew R.; Nourse, Jamison L.; Lee, Kayla R.; Ahmed, Syed N.; Arulmoli, Janahan; Jiang, Alan Y.L.; McDonnell, Lisa P.; Botten, Giovanni A.; Lee, Abraham P.; Monuki, Edwin S.; et al (, Stem Cell Reports)
An official website of the United States government
