skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Keunsub"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to precisely engineerAgrobacteriumstrains is crucial for advancing their utility in plant biotechnology. We recently implemented the CRISPR RNA-guided transposase system, INTEGRATE, as an efficient tool for genetic modification inAgrobacterium. Despite its promise, the practical application of INTEGRATE inAgrobacteriumstrain engineering remains underexplored. Here, we present a standardized and optimized workflow that enables researchers to harness INTEGRATE for targeted genome modifications. By addressing common challenges, such as crRNA design, transformation efficiency, and vector eviction, this protocol expands the genetic toolkit available forAgrobacterium, facilitating both functional genomics and strain development for plant transformation. As a demonstration, we domesticatedAgrobacterium rhizogenesK599 strain by deleting the 15-kb T-DNA region from its root-inducing plasmid pRi2659 and inactivating a thymidylate synthase gene to render the strain auxotrophic for thymidine. The protocol provides detailed guidance for each step, including target site selection, crRNA spacer cloning,Agrobacteriumtransformation, screening for targeted insertion and Cre/loxP-mediated deletion, and vector removal. This resource will empower new users to perform efficient and reproducible genome engineering inAgrobacteriumusing the INTEGRATE system, paving the way for broader adoption and innovation in plant biotechnology. 
    more » « less
    Free, publicly-accessible full text available November 6, 2026
  2. Free, publicly-accessible full text available October 1, 2026
  3. Chromosome architecture plays a crucial role in bacterial adaptation, yet its direct impact remains unclear. Different bacterial species and even strains within the same species exhibit diverse chromosomal configurations, including a single circular or linear chromosome, two circular chromosomes, or a circular-linear combination. To investigate how these architectures shape bacterial behavior, we generated near-isogenic strains representing each configuration inAgrobacterium tumefaciensC58, an important soil bacterium widely used for plant genetic transformation. Strains with a single-chromosome architecture, whether linear or circular, exhibited faster growth, enhanced stress tolerance, and greater interstrain competitiveness. In contrast, bipartite chromosome strains showed higher virulence gene expression and enhanced transient plant transformation efficiency, suggesting a pathogenic adaptation. Whole-transcriptome analysis revealed architecture-dependent gene expression patterns, underscoring the profound impact of chromosome organization onAgrobacteriumfitness and virulence. These findings highlight how chromosome structure influences bacterial adaptation and shapes evolutionary trajectories. 
    more » « less
    Free, publicly-accessible full text available October 3, 2026
  4. Free, publicly-accessible full text available August 1, 2026
  5. Abstract High‐precision genome editing tools, such as programmable nucleases, are poised to transform crop breeding and significantly impact fundamental plant research. Among these tools, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR‐associated 9) system is a programmable, RNA‐guided nuclease that introduces targeted, site‐specific double‐stranded breaks in the target DNA loci. When these breaks are repaired, it often results in a frame‐shift mutation via short insertion/deletion (indel), leading to gene knockout. Since its first successful use in plants, CRISPR/Cas9 has been widely adopted for targeting genes of agronomic and scientific importance in multiple crops, including rice, maize, wheat, and sorghum. These cereal crops ensure global food security, provide essential nutrition, and support economic stability. Additionally, such crops support biofuel production, livestock feed, and sustainable farming practices through crop rotation. This article outlines the strategies for implementing CRISPR/Cas9 genome editing in plants, including a step‐by‐step process of guide RNA target selection, oligonucleotide design, construct development, assembly, and analysis of genome edits. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: CRISPR/Cas9 guide RNA target selection Support Protocol 1: Genomic DNA extraction in‐house protocol Basic Protocol 2: Construction of a binary plasmid vector Support Protocol 2:Agrobacteriumtransformation with a binary vector construct and stability check Support Protocol 3: Plant transformation Basic Protocol 3: Genotyping of edited events 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  6. Abstract This report provides an overview of the content and data collected from the “Successes, Challenges, and Opportunities Plant Transformation Research in Africa” panel discussion. Organized by PlantGENE, this event brought together scientists and stakeholders across the globe to examine the complex challenges and emerging opportunities in plant transformation research in laboratories across Africa. The discussion, rooted in insights from a panel of six leading scientists, highlights critical issues including restrictive regulatory environments, prohibitive costs, and the inconsistent availability of essential research materials. Additionally, the pervasive “brain drain” phenomenon, where skilled researchers leave the continent for better opportunities, exacerbates the difficulties faced by African scientists. Despite these challenges, the report also identifies significant advancements, particularly in the growing recognition of African leadership within universities and national agricultural research systems (NARS). These institutions, supported by highly skilled faculty and motivated graduate students, are producing high-quality research that contributes to global scientific knowledge. The panelists emphasized the necessity of creating an environment that encourages African scientists to remain on the continent and address local challenges through innovative research. Strengthening intra-African networks and fostering collaborations with the global scientific community are proposed as essential strategies to achieve this. This report underscores the critical need for substantial investments from both global and African organizations, working with African governments, to support these efforts. Furthermore, it calls for science-based decision-making and fair regulatory frameworks to align with unique opportunities and risks associated with technological advancements in Africa. This paper details the observations of six panelists and analyzes the results of attendee surveys in order to document these challenges and opportunities while advocating for sustained investment and strategic partnerships to build a thriving bioeconomy across Africa. 
    more » « less
  7. Goetz, H (Ed.)
    Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additionalvirgene helper plasmid into disarmedAgrobacteriumstrains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophicAgrobacteriumstrains to boostAgrobacterium-mediated plant transformation efficiency. AuxotrophicAgrobacteriumstrains are useful in reducingAgrobacteriumovergrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from publicAgrobacteriumstrains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transientGUSexpression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries thevirAgene from pTiBo542 in addition to othervirgene operons (virG,virB,virC,virD,virE, andvirJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improvedAgrobacteriumsystem, including auxotrophic disarmedAgrobacteriumstrains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications. 
    more » « less
  8. Efficient genetic transformation is a prerequisite for rapid gene functional analyses and crop trait improvements. We recently demonstrated that new T-DNA binary vectors with NptII/G418 selection and a compatible helper plasmid can efficiently transform maize inbred B104 using our rapid Agrobacterium-mediated transformation method. In this work, we implemented the non-integrating Wuschel2 (Wus2) T-DNA vector method for Agrobacterium-mediated B104 transformation and tested its potential for recalcitrant inbred B73 transformation and gene editing. The non-integrating Wus2 (NIW) T-DNA vector-assisted transformation method uses two Agrobacterium strains: one carrying a gene-of-interest (GOI) construct and the other providing an NIW construct. To monitor Wus2 co-integration into the maize genome, we combined the maize Wus2 expression cassette driven by a strong constitutive promoter with a new visible marker RUBY, which produces the purple pigment betalain. As a GOI construct, we used a previously tested CRISPR-Cas9 construct pKL2359 for Glossy2 gene mutagenesis. When both GOI and NIW constructs were delivered by LBA4404Thy- strain, B104 transformation frequency was significantly enhanced by about two-fold (10% vs. 18.8%). Importantly, we were able to transform a recalcitrant inbred B73 using the NIW-assisted transformation method and obtained three transgene-free edited plants by omitting the selection agent G418. These results suggest that NIW-assisted transformation can improve maize B104 transformation frequency and provide a novel option for CRISPR technology for transgene-free genome editing. 
    more » « less