Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 15, 2026
-
Free, publicly-accessible full text available May 15, 2026
-
Free, publicly-accessible full text available May 15, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 18, 2026
-
Free, publicly-accessible full text available February 13, 2026
-
Neural networks (NNs) enable precise modeling of complicated geophysical phenomena but can be sensitive to small input changes. In this work, we present a new method for analyzing this instability in NNs. We focus our analysis on adversarial examples, test‐time inputs with carefully crafted human‐imperceptible perturbations that expose the worst‐case instability in a model's predictions. Our stability analysis is based on a low‐rank expansion of NNs on a fixed input, and we apply our analysis to a NN model for tsunami early warning which takes geodetic measurements as the input and forecasts tsunami waveforms. The result is an improved description of local stability that explains adversarial examples generated by a standard gradient‐based algorithm, and allows the generation of other comparable examples. Our analysis can predict whether noise in the geodetic input will produce an unstable output, and identifies a potential approach to filtering the input that enable more robust forecastingmore » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract. We introduce physics-informed multimodal autoencoders (PIMA) - a variational inference framework for discovering shared information in multimodal datasets. Individual modalities are embedded into a shared latent space and fused through a product-of-experts formulation, enabling a Gaussian mixture prior to identify shared features. Sampling from clusters allows cross-modal generative modeling, with a mixture-of-experts decoder that imposes inductive biases from prior scientific knowledge and thereby imparts structured disentanglement of the latent space. This approach enables cross-modal inference and the discovery of features in high-dimensional heterogeneous datasets. Consequently, this approach provides a means to discover fingerprints in multimodal scientific datasets and to avoid traditional bottlenecks related to high-fidelity measurement and characterization of scientificmore » « lessFree, publicly-accessible full text available January 1, 2026
-
Continuous-time dynamics models, e.g., neural ordinary differential equations, enable accurate modeling of underlying dynamics in time-series data. However, employing neural networks for parameterizing dynamics makes it challenging for humans to identify dependence structures, especially in the presence of delayed effects. In consequence, these models are not an attractive option when capturing dependence carries more importance than accurate modeling, e.g., in tsunami forecasting. In this paper, we present a novel method for identifying dependence structures in continuous-time dynamics models. We take a two-step approach: (1) During training, we promote weight sparsity in the model’s first layer during training. (2) We prune the sparse weights after training to identify dependence structures. In evaluation, we test our method in scenarios where the exact dependence structures of time-series are known. Compared to baselines, our method is more effective in uncovering dependence structures in data even when there are delayed effects. Moreover, we evaluate our method to a real-world tsunami forecasting, where the exact dependence structures are unknown beforehand. Even in this challenging scenario, our method still effective learns physically-consistent dependence structures and achieves high accuracy in forecasting.more » « lessFree, publicly-accessible full text available October 21, 2025
-
Recent policy initiatives have acknowledged the importance of disaggregating data pertaining to diverse Asian ethnic communities to gain a more comprehensive understanding of their current status and to improve their overall well-being. However, research on anti-Asian racism has thus far fallen short of properly incorporating data disaggregation practices. Our study addresses this gap by collecting 12-month-long data from X (formerly known as Twitter) that contain diverse sub-ethnic group representations within Asian communities. In this dataset, we break down anti-Asian toxic messages based on both temporal and ethnic factors and conduct a series of comparative analyses of toxic messages, targeting different ethnic groups. Using temporal persistence analysis, 𝑛-gram-based correspondence analysis, and topic modeling, this study provides compelling evidence that anti-Asian messages comprise various distinctive narratives. Certain messages targeting sub-ethnic Asian groups entail different topics that distinguish them from those targeting Asians in a generic manner or those aimed at major ethnic groups, such as Chinese and Indian. By introducing several techniques that facilitate comparisons of online anti-Asian hate towards diverse ethnic communities, this study highlights the importance of taking a nuanced and disaggregated approach for understanding racial hatred to formulate effective mitigation strategies.more » « less