Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 25, 2025
-
Given the dynamic and complex nature of the construction industry, maintaining situation awareness at job sites is critical. To react properly, workers must identify dynamic safety hazards within the scene. The majority of studies assessing construction workers’ situation awareness have utilized static images, virtual reality, and other types of simulation methods, but questions remain as to whether these formats are able to capture and monitor workers’ naturalistic behaviors and hazard identification abilities. To identify whether the format of hazardous stimuli (i.e., static, image-based vs. dynamic, and video-based formats) impact workers’ subjective and objective hazard identification and situation awareness metrics, this study developed 23 safety hazard scenarios utilizing state-of-the-art augmented 360° panoramas and then tracked differences in workers’ visual search patterns and hazard identification abilities using eye-tracking technology. The workers’ cognitive responses, evidenced by their eye movements, showed that workers had significantly varied cognitive processes and abilities depending on the format of stimuli: Workers with lower hazard identification skills were more likely to miss hazards in a dynamic environment. This result suggests that the experimental setting should be carefully designed to determine construction workers’ natural cognitive process.more » « less
-
Safety training has long been considered a promising method to enhance workers’ hazard identification skills within construction sites. To improve the effectiveness of safety training, such varied features as a training environment, individuals’ learning ability, and lesson personalization have been investigated. However, as records show workers still miss hazards even after receiving safety training, understanding the fundamental cognitive reasons for unrecognized hazards becomes a crucial step toward developing effective personalized safety training. This study used various 360° panoramas of construction scenarios to empirically examine 30 workers’ visual search strategies and assess workers’ hazard identification skills. Results suggest several cognitive limitations caused failures in hazard recognition, including attentional failure, inattentional blindness, and low perceived risk. Based on these findings, this study proposes a personalized safety training framework to address such cognitive limitations to improve occupational safety in the construction industrymore » « less