skip to main content

Search for: All records

Creators/Authors contains: "Lee, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Langran, E. (Ed.)
    Over the last two years, the COVID-19 pandemic has required teacher educators to teach their classes online. Teacher educators now need to reflect on the learning opportunities that the COVID-19 induced shift to online learning has provided. This study shares two teacher educators’ experiences of teaching and supporting preservice teachers (PSTs) as they taught engineering online to elementary students. The two teacher educators noticed (a) positive changes in PSTs’ attitudes and beliefs about technology integration, (b) PSTs’ tendency to select and use of educational technologies, (c) PSTs’ recognition of the importance of online interaction and feedback from K-12 students, (d) the importance of providing PSTs with extended access to physical hardware, and (e) the importance of providing developmentally appropriate digital resources. The paper concludes with suggestions for teacher educators who are preparing PSTs for the next generation of teaching.
    Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. With the development and spread of Internet of Things technologies, various types of data for IoT applications can be generated anywhere and at any time. Among such data, there are data that depend heavily on generation time and location. We define these data as spatiotemporal data (STD). In previous studies, we proposed a STD retention system using vehicular networks to achieve the “Local production and consumption of STD” paradigm. The system can quickly provide STD for users within a specific location by retaining the STD within the area. However, this system does not take into account that each type of STD has different requirements for STD retention. In particular, the lifetime of STD and the diffusion time to the entire area directly influence the performance of STD retention. Therefore, we propose an efficient diffusion and elimination control method for retention based on the requirements of STD. The results of simulation evaluation demonstrated that the proposed method can satisfy the requirements of STD, while maintaining a high coverage rate in the area.
  4. The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13 CO (2–1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude–velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~10 5 –10 6 M ⊙ kpc −1 . This is similar to values inferred from data sets in which emission distributionsmore »were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.« less
    Free, publicly-accessible full text available February 1, 2023
  5. In IoT era, the growth of data variety is driven by crossdomain data fusion. In this paper, we advocate that “local production for local consumption (LPLC) paradigm” can be an innovative approach in cross-domain data fusion, and propose a new framework, geolocationcentric information platform (GCIP) that can produce and deliver diverse spatio-temporal content (STC). In the GCIP, (1) infrastructure-based geographic hierarchy edge network and (2) adhoc-based STC retention system are interplayed to provide both of geolocation-awareness and resiliency. Then, we discussed the concepts and the technical challenges of the GCIP. Finally, we implemented a proof-of-concepts of GCIP and demonstrated its ecacy through practical experiments on campus IPv6 network and simulation experiments.
  6. Abstract The magnetic ground state of the pyrochlore Yb 2 GaSbO 7 has not been established. The persistent spin fluctuations observed by muon spin-relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb 2 GaSbO 7 to revisit the nature of the magnetic ground state. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb 2 GaSbO 7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field μ 0 H c  ~ 1.5 T.
    Free, publicly-accessible full text available December 1, 2022
  7. Abstract We report on the tectonic framework, seismicity, and aftershock monitoring efforts related to the 31 March 2020 Mw 6.5 Stanley, Idaho, earthquake. The earthquake sequence has produced both strike-slip and dip-slip motion, with minimal surface displacement or damage. The earthquake occurred at the northern limits of the Sawtooth normal fault. This fault separates the Centennial tectonic belt, a zone of active seismicity within the Basin and Range Province, from the Idaho batholith to the west and Challis volcanic belt to the north and east. We show evidence for a potential kinematic link between the northeast-dipping Sawtooth fault and the southwest-dipping Lost River fault. These opposing faults have recorded four of the five M≥6 Idaho earthquakes from the past 76 yr, including 1983 Mw 6.9 Borah Peak and the 1944 M 6.1 and 1945 M 6.0 Seafoam earthquakes. Geological and geophysical data point to possible fault boundary segments driven by pre-existing geologic structures. We suggest that the limits of both the Sawtooth and Lost River faults extend north beyond their mapped extent, are influenced by the relic trans-Challis fault system, and that seismicity within this region will likely continue for the coming years. Ongoing seismic monitoring efforts will lead to an improved understanding of groundmore »shaking potential and active fault characteristics.« less