skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Michael_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to systematically modify the magnetic properties of epitaxial La0.7Sr0.3MnO3 thin films is demonstrated through the use of Ar+ ion implantation. With increasing implant dose, a uniaxial expansion of the c-axis of the unit cell leads to a transition from in-plane toward perpendicular magnetic anisotropy. Above a critical dose of 3 × 1013 Ar+/cm2, significant crystalline disorder exists leading to a decrease in the average Mn valence state and near complete suppression of magnetization. Combined with lithographic techniques, ion implantation enables the fabrication of magnetic spin textures consisting of adjacent regions with tunable magnetic anisotropy in complex oxide thin films. 
    more » « less