skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Minjoo_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conjugated polymers can undergo complex, concentration‐dependent self‐assembly during solution processing, yet little is known about its impact on film morphology and device performance of organic solar cells. Herein, lyotropic liquid crystal (LLC) mediated assembly across multiple conjugated polymers is reported, which generally gives rise to improved device performance of blade‐coated non‐fullerene bulk heterojunction solar cells. Using D18 as a model system, the formation mechanism of LLC is unveiled employing solution X‐ray scattering and microscopic imaging tools: D18 first aggregates into semicrystalline nanofibers, then assemble into achiral nematic LLC which goes through symmetry breaking to yield a chiral twist‐bent LLC. The assembly pathway is driven by increasing solution concentration – a common driving force during evaporative assembly relevant to scalable manufacturing. This assembly pathway can be largely modulated by coating regimes to give 1) lyotropic liquid crystalline assembly in the evaporation regime and 2) random fiber aggregation pathway in the Landau–Levich regime. The chiral liquid crystalline assembly pathway resulted in films with crystallinity 2.63 times that of films from the random fiber aggregation pathway, significantly enhancing the T80 lifetime by 50‐fold. The generality of LLC‐mediated assembly and enhanced device performance is further validated using polythiophene and quinoxaline‐based donor polymers. 
    more » « less
  2. Remarkable systems have been reported recently using the polylithic integration of semiconductor optoelectronic devices and plasmonic materials exhibiting epsilon-near-zero (ENZ) and negative permittivity. In traditional noble metals, the ENZ and plasmonic response is achieved near the metal plasma frequency, limiting plasmonic optoelectronic device design flexibility. Here, we leverage an all-epitaxial approach to monolithically and seamlessly integrate designer plasmonic materials into a quantum dot light emitting diode, leading to a 5.6 ×<#comment/> enhancement over an otherwise identical non-plasmonic control sample. The device presented exhibits optical powers comparable, and temperature performance far superior, to commercially available devices. 
    more » « less