Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available June 21, 2025
-
Abstract The United States’ current Seafood Import Monitoring Program (SIMP) and a potential extension are undergoing review, yet quantitative evaluation of the current program is lacking. The SIMP is a traceability program aimed at reducing imports of seafood products that are of illegal, unreported, and unregulated (IUU) origin or associated with seafood fraud. We conducted a quantitative examination of the SIMP’s current scope and design by synthesizing publicly available trade data along with measures of IUU fishing and seafood mislabeling. We found prioritized shipments amounted to 33% of 2016 imported tonnage. The SIMP species groups had higher IUU scores and mislabeling rates relative to non-SIMP groups, but the difference was consistent with random prioritization suggesting potential benefits from program expansion. Furthermore, two-thirds of imported volume lacked a mislabeling rate and 5% lacked species information, underlining the urgent need for improved open-access data on globalized seafood supply chains.more » « lessFree, publicly-accessible full text available October 3, 2025
-
A localized Zeeman field, intensified at heterostructure interfaces, could play a crucial role in a broad area including spintronics and unconventional superconductors. Conventionally, the generation of a local Zeeman field is achieved through magnetic exchange coupling with a magnetic material. However, magnetic elements often introduce defects, which could weaken or destroy superconductivity. Alternatively, the coupling between a superconductor with strong spin-orbit coupling and a nonmagnetic chiral material could serve as a promising approach to generate a spin-active interface. Here, we leverage an interface superconductor, namely, induced superconductivity in noble metal surface states, to probe the spin-active interface. Our results unveil an enhanced interface Zeeman field, which selectively closes the surface superconducting gap while preserving the bulk superconducting pairing. The chiral material, i.e., trigonal tellurium, also induces Andreev bound states (ABS) exhibiting spin polarization. The field dependence of ABS manifests a substantially enhanced interface Landég-factor (geff~ 12), thereby corroborating the enhanced interface Zeeman energy.more » « lessFree, publicly-accessible full text available August 23, 2025
-
Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry–reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.more » « less