Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Drouhin, Henri-Jean M. ; Wegrowe, Jean-Eric ; Razeghi, Manijeh (Ed.)Majorana zero modes (MZMs) are expected to emerge in material heterostructures combining superconductivity, ferromagnetism, and spin-orbit coupling (SOC). Particularly, inducing superconductivity and magnetic exchange interactions in well-defined Shockley surface states (SS) of high quality ultrathin Au(111) layers, which intrinsically have strong SOC, has been predicted as an excellent platform for MBS. In this talk, our success in creating such heterostructure in epitaxially grown Au(111) heterostructures will be presented. Signatures of superconductivity induced in the two-dimensional SS of Au(111) thin film are observed by means of electron tunneling spectroscopy. The behavior of such superconducting state under a planar Zeeman field will be shown. Evidence of a pair of MZMs in a fabricated Au(111) nanowire system will be demonstrated.
-
Abstract. Forest fires are major contributors of reactive gas- and particle-phaseorganic compounds to the atmosphere. We used offline high-resolution tandemmass spectrometry to perform a molecular-level speciation of gas- andparticle-phase compounds sampled via aircraft from an evolving boreal forestfire smoke plume in Saskatchewan, Canada. We observed diversemultifunctional compounds containing oxygen, nitrogen, and sulfur (CHONS),whose structures, formation, and impacts are understudied. Thedilution-corrected absolute ion abundance of particle-phase CHONS compoundsincreased with plume age by a factor of 6.4 over the first 4 h ofdownwind transport, and their relative contribution to the observedfunctionalized organic aerosol (OA) mixture increased from 19 % to 40 %.The dilution-corrected absolute ion abundance of particle-phase compoundswith sulfide functional groups increased by a factor of 13 with plume age,and their relative contribution to observed OA increased from 4 % to40 %. Sulfides were present in up to 75 % of CHONS compounds and theincreases in sulfides were accompanied by increases in ring-bound nitrogen;both increased together with CHONS prevalence. A complex mixture ofintermediate- and semi-volatile gas-phase organic sulfur species wasobserved in emissions from the fire and depleted downwind, representingpotential precursors to particle-phase CHONS compounds. These resultsdemonstrate CHONS formation from nitrogen- and oxygen-containing biomass burningemissions in the presence of reduced sulfur species. In addition, theyhighlight chemical pathways thatmore »
-
Under certain conditions, a fermion in a superconductor can separate in space into two parts known as Majorana zero modes, which are immune to decoherence from local noise sources and are attractive building blocks for quantum computers. Promising experimental progress has been made to demonstrate Majorana zero modes in materials with strong spin–orbit coupling proximity coupled to superconductors. Here we report signatures of Majorana zero modes in a material platform utilizing the surface states of gold. Using scanning tunneling microscope to probe EuS islands grown on top of gold nanowires, we observe two well-separated zero-bias tunneling conductance peaks aligned along the direction of the applied magnetic field, as expected for a pair of Majorana zero modes. This platform has the advantage of having a robust energy scale and the possibility of realizing complex designs using lithographic methods.
-
We review the physics of pair-density wave (PDW) superconductors. We begin with a macroscopic description that emphasizes order induced by PDW states, such as charge-density wave, and discuss related vestigial states that emerge as a consequence of partial melting of the PDW order. We review and critically discuss the mounting experimental evidence for such PDW order in the cuprate superconductors, the status of the theoretical microscopic description of such order, and the current debate on whether the PDW is a mother order or another competing order in the cuprates. In addition, we give an overview of the weak coupling version of PDW order, Fulde–Ferrell–Larkin–Ovchinnikov states, in the context of cold atom systems, unconventional superconductors, and noncentrosymmetric and Weyl materials.