skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Evidence abounds that young stellar objects undergo luminous bursts of intense accretion that are short compared to the time it takes to form a star. It remains unclear how much these events contribute to the main-sequence masses of the stars. We demonstrate the power of time-series far-infrared (far-IR) photometry to answer this question compared to similar observations at shorter and longer wavelengths. We start with model spectral energy distributions that have been fit to 86 Class 0 protostars in the Orion molecular clouds. The protostars sample a broad range of envelope densities, cavity geometries, and viewing angles. We then increase the luminosity of each model by factors of 10, 50, and 100 and assess how these luminosity increases manifest in the form of flux increases over wavelength ranges of interest. We find that the fractional change in the far-IR luminosity during a burst more closely traces the change in the accretion rate than photometric diagnostics at mid-infrared and submillimeter wavelengths. We also show that observations at far-IR and longer wavelengths reliably track accretion changes without confusion from large, variable circumstellar and interstellar extinction that plague studies at shorter wavelengths. We close by discussing the ability of a proposed far-IR surveyor for the 2030s to enable improvements in our understanding of the role of accretion bursts in mass assembly. 
    more » « less
  2. null (Ed.)
    Machine tasks in workshops or factories are often a compound sequence of local, spatial, and body-coordinated human-machine interactions. Prior works have shown the merits of video-based and augmented reality (AR) tutoring systems for local tasks. However, due to the lack of a bodily representation of the tutor, they are not as effective for spatial and body-coordinated interactions. We propose avatars as an additional tutor representation to the existing AR instructions. In order to understand the design space of tutoring presence for machine tasks, we conduct a comparative study with 32 users. We aim to explore the strengths/limitations of the following four tutor options: video, non-avatar-AR, half-body+AR, and full-body+AR. The results show that users prefer the half-body+AR overall, especially for the spatial interactions. They have a preference for the full-body+AR for the body-coordinated interactions and the non-avatar-AR for the local interactions. We further discuss and summarize design recommendations and insights for future machine task tutoring systems. 
    more » « less
  3. The dynamic rearrangement of the actin cytoskeleton is an essential component of many mechanotransduction and cellular force generation pathways. Here we use periodic surface topographies with feature sizes comparable to those of in vivo collagen fibers to measure and compare actin dynamics for two representative cell types that have markedly different migratory modes and physiological purposes: slowly migrating epithelial MCF10A cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to measure the directions of actin waves at the submicron scale. Clustering the optical flow into regions that move in similar directions enables micron-scale measurements of actin-wave speed and direction. Although the speed and morphology of actin waves differ between MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both cell types at the micron and submicron scales. 
    more » « less
  4. Abstract Oral delivery, while a highly desirable form of nanoparticle‐drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)‐coated (PEGylated) core‐shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi‐total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco‐2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C’ dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C’ dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C’ dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health. 
    more » « less