Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We have observed electron impact fluorescence from CO2to excite the Cameron bands (CBs), CO (a3Π →X1Σ+; 180–280 nm), the first-negative group (1NG) bands, CO+(B2Σ+→X2Σ+; 180–320 nm), the fourth-positive group (4PG) bands, CO (A1Π →X1Σ+; 111–280 nm), and the UV doublet, CO2+( 288.3 and 289.6 nm) in the ultraviolet (UV). This wavelength range matches the spectral region of past and present spacecraft equipped to observe UV dayglow and aurora emissions from the thermospheres (100–300 km) of Mars and Venus. Our large vacuum system apparatus is able to measure the emission cross sections of the strongest optically forbidden UV transitions found in planetary spectra. Based on our cross-sectional measurements, previous CB emission cross-sectional errors exceed a factor of 3. The UV doublet lifetime is perturbed through spin–orbit coupling. Forward modeling codes of the Mars dayglow have not been accurate in the mid-UV due to systematic errors in these two emission cross sections. We furnish absolute emission cross sections for several band systems over electron energies 20–100 eV for CO2. We present a CB lifetime, which together with emission cross sections, furnish a set of fundamental physical constants for electron transport codes such as AURIC (Atmospheric Ultraviolet Radiance Integrated Code). AURIC and Trans-Mars are used in the analysis of UV spectra from the Martian dayglow and aurora.more » « less
-
Abstract We have analyzed medium‐resolution (full width at half maximum, FWHM = 1.2 nm), Middle UltraViolet (MUV; 180–280 nm) laboratory emission spectra of carbon monoxide (CO) excited by electron impact at 15, 20, 40, 50, and 100 eV under single‐scattering conditions at 300 K. The MUV emission spectra at 100 eV contain the Cameron Bands (CB) CO(a3Π → X1Σ+), the fourth positive group (4PG) CO(A1Π → X1Σ+), and the first negative group (1NG) CO+(B2Σ+→ X2Σ) from direct excitation and cascading‐induced emission of an optically thin CO gas. We have determined vibrational intensities and emission cross sections for these systems, important for modeling UV observations of the atmospheres of Mars and Venus. We have also measured the CB “glow” profile about the electron beam of the long‐lived CO (a3Π) state and determined its average metastable lifetime of 3 ± 1 ms. Optically allowed cascading from a host of triplet states has been found to be the dominant excitation process contributing to the CB emission cross section at 15 eV, most strongly by the d3Δ and a'3Σ+electronic states. We normalized the CB emission cross section at 15 eV electron impact energy by multilinear regression (MLR) analysis to the blended 15 eV MUV spectrum over the spectral range of 180–280 nm, based on the 4PG emission cross section at 15 eV that we have previously measured (Ajello et al., 2019,https://doi.org/10.1029/2018ja026308). We find the CB total emission cross section at 15 eV to be 7.7 × 10−17 cm2.more » « less