skip to main content


Search for: All records

Creators/Authors contains: "Lee, Russell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper develops competitive bidding strategies for an online linear optimization problem with inventory management constraints in both cost minimization and profit maximization settings. In the minimization problem, a decision maker should satisfy its time-varying demand by either purchasing units of an asset from the market or producing them from a local inventory with limited capacity. In the maximization problem, a decision maker has a time-varying supply of an asset that may be sold to the market or stored in the inventory to be sold later. In both settings, the market price is unknown in each timeslot and the decision maker can submit a finite number of bids to buy/sell the asset. Once all bids have been submitted, the market price clears and the amount bought/sold is determined based on the clearing price and submitted bids. From this setup, the decision maker must minimize/maximize their cost/profit in the market, while also devising a bidding strategy in the face of an unknown clearing price. We propose DEMBID and SUPBID, two competitive bidding strategies for these online linear optimization problems with inventory management constraints for the minimization and maximization setting respectively. We then analyze the competitive ratios of the proposed algorithms and show that the performance of our algorithms approaches the best possible competitive ratio as the maximum number of bids increases. As a case study, we use energy data traces from Akamai data centers, renewable outputs from NREL, and energy prices from NYISO to show the effectiveness of our bidding strategies in the context of energy storage management for a large energy customer participating in a real-time electricity market. 
    more » « less
  2. This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform worst-case optimized algorithms and fully data-driven algorithms. 
    more » « less
  3. null (Ed.)
    This paper studies the online energy scheduling problem in a hy- brid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the pro- posed algorithms using two performance metrics: robustness that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and consistency for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimal- ity of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal de- terministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform worst-case optimized algorithms and fully data-driven algorithms. 
    more » « less
  4. null (Ed.)
    This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: textit{robustness} that measures the competitive ratio as a function of the trust parameter when the advice is inaccurate, and textit{consistency} for competitive ratio when the advice is accurate. Since the competitive ratio is analyzed in two different regimes, we further investigate the Pareto optimality of the proposed algorithms. Our results show that the proposed deterministic algorithm is Pareto-optimal, in the sense that no other online deterministic algorithms can dominate the robustness and consistency of our algorithm. Furthermore, we show that the proposed randomized algorithm dominates the Pareto-optimal deterministic algorithm. Our large-scale empirical evaluations using real traces of energy demand, energy prices, and renewable energy generations highlight that the proposed algorithms outperform algorithms optimized for worst-case and fully data-driven algorithms. 
    more » « less