Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2025
-
The long-range migration of monarch butterflies, extended over 4000 km, is not well understood. Monarchs experience varying density conditions during migration, ranging as high as 3000 m, where the air density is much lower than at sea level. In this study, we test the hypothesis that the aerodynamic performance of monarchs improves at reduced density conditions by considering the fluid–structure interaction of chordwise flexible wings. A well-validated, fully coupled Navier–Stokes/structural dynamics solver was used to illustrate the interplay between wing motion, aerodynamics, and structural flexibility in forward flight. The wing density and elastic modulus were measured from real monarch wings and prescribed as inputs to the aeroelastic framework. Our results show that sufficient lift is generated to offset the butterfly weight at higher altitudes, aided by the wake-capture mechanism, which is a nonlinear wing–wake interaction mechanism, commonly seen for hovering animals. The mean total power, defined as the sum of the aerodynamic and inertial power, decreased by 36% from the sea level to the condition at 3000 m. Decreasing power with altitude, while maintaining the same equilibrium lift, suggests that the butterflies generate lift more efficiently at higher altitudes.more » « less
-
Abstract This paper presents a geometric adaptive position tracking control system for a quadrotor unmanned aerial vehicle. In particular, the attitude control system is designed on the product of the two-dimensional unit sphere and the one-dimensional circle such that the direction of the thrust that is critical for position tracking is controlled independently from the yawing direction that is irrelevant to the position dynamics. Compared against the prior work with coupled attitude controls on the special orthogonal group, the proposed controller prevents large yaw errors from causing an undesirable performance degradation in tracking a position command. Further, the control input is augmented with adaptive control terms to mitigate the effects of disturbances, and it is formulated globally on the spheres to avoid singularities and complexities of local coordinates. The efficacy of the proposed control system is illustrated by both numerical examples and indoor/outdoor flight experiments.more » « less