Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We previously discovered that electron attachment to gaseous peptide anions can occur within a relatively narrow electron energy range. The resulting charge-increased radical ions undergo dissociation analogous to conventional cation electron capture/transfer dissociation (ECD/ETD), thus enabling a novel tandem mass spectrometry (MS/MS) technique that we termed negative ion electron capture dissociation (niECD). We proposed that gaseous zwitterionic structures are required for niECD with electron capture either occurring at or being directed by a positively charged site. Here, we further evaluate this zwitterion mechanism by performing niECD of peptides derivatized to alter their ability to form zwitterionic gaseous structures. Introduction of a fixed positive charge tag, a highly basic guanidino group, or a highly acidic sulfonate group to promote zwitterionic structures in singly charged anions, rescued the niECD ability of a peptide refractory to niECD in its unmodified form. We also performed a systematic study of five sets of synthetic peptides with decreasing zwitterion propensity and found that niECD efficiency decreased accordingly, further supporting the zwitterion mechanism. However, traveling-wave ion mobility-mass spectrometry experiments, performed to gain further insight into the gas-phase structures of peptides showing high niECD efficiency, exhibited an inverse correlation between the orientationally averaged collision cross sections and niECD efficiency. These results indicate that compact salt-bridged structures are also a requirement for effective niECD.more » « lessFree, publicly-accessible full text available April 3, 2025
-
null (Ed.)The photoluminescence (PL) response of porous Si has potential applications in a number of sensor and bioimaging techniques. However, many questions still remain regarding how to stabilize and enhance the PL signal, as well as how PL responds to environmental factors. Regenerative electroless etching (ReEtching) was used to produce photoluminescent porous Si directly from Si powder. As etched, the material was H-terminated. The intensity and peak wavelength were greatly affected by the rinsing protocol employed. The highest intensity and bluest PL were obtained when dilute HCl(aq) rinsing was followed by pentane wetting and vacuum oven drying. Roughly half of the hydrogen coverage was replaced with –RCOOH groups by thermal hydrosilylation. Hydrosilylated porous Si exhibited greater stability in aqueous solutions than H-terminated porous Si. Pickling of hydrosilylated porous Si in phosphate buffer was used to increase the PL intensity without significantly shifting the PL wavelength. PL intensity, wavelength and peak shape responded linearly with temperature change in a manner that was specific to the surface termination, which could facilitate the use of these parameters in a differential sensor scheme that exploits the inherent inhomogeneities of porous Si PL response.more » « less
-
ABSTRACT Formation of a zygote is coupled with extensive epigenetic reprogramming to enable appropriate inheritance of histone methylation and prevent developmental delays. In Caenorhabditis elegans, this reprogramming is mediated by the H3K4me2 demethylase SPR-5 and the H3K9 methyltransferase, MET-2. In contrast, the H3K36 methyltransferase MES-4 maintains H3K36me2/3 at germline genes between generations to facilitate re-establishment of the germline. To determine whether the MES-4 germline inheritance pathway antagonizes spr-5; met-2 reprogramming, we examined the interaction between these two pathways. We found that the developmental delay of spr-5; met-2 mutant progeny is associated with ectopic H3K36me3 and the ectopic expression of MES-4-targeted germline genes in somatic tissues. Furthermore, the developmental delay is dependent upon MES-4 and the H3K4 methyltransferase, SET-2. We propose that MES-4 prevents crucial germline genes from being repressed by antagonizing maternal spr-5; met-2 reprogramming. Thus, the balance of inherited histone modifications is necessary to distinguish germline versus soma and prevent developmental delay.
This article has an associated ‘The people behind the papers’ interview.
-
In Caenorhabditis elegans, mutations in WDR-5 and other components of the COMPASS H3K4 methyltransferase complex extend lifespan and enable its inheritance. Here, we show that wdr-5 mutant longevity is itself a transgenerational trait that corresponds with a global enrichment of the heterochromatin factor H3K9me2 over twenty generations. In addition, we find that the transgenerational aspects of wdr-5 mutant longevity require the H3K9me2 methyltransferase MET-2, and can be recapitulated by removal of the putative H3K9me2 demethylase JHDM-1. Finally, we show that the transgenerational acquisition of longevity in jhdm-1 mutants is associated with accumulating genomic H3K9me2 that is inherited by their long-lived wild-type descendants at a subset of loci. These results suggest that heterochromatin facilitates the transgenerational establishment and inheritance of a complex trait. Based on these results, we propose that transcription-coupled H3K4me via COMPASS limits lifespan by encroaching upon domains of heterochromatin in the genome.
-
Abstract Transvection—a phenomenon in which the allele on one chromosome genetically interacts with its paired allele on the homologous chromo-some.....
Transvection is broadly defined as the ability of one locus to affect its homologous locus in trans. Although it was first discovered in the 1950s, there are only two known cases in mammals. Here, we report another instance of mammalian transvection induced by the Cre/LoxP system, which is widely used for conditional gene targeting in the mouse. We attempted to use the germline-expressed Vasa-Cre transgene to engineer a mouse mutation, but observe a dramatic reduction of LoxP recombination in mice that inherit an already deleted LoxP allele in trans. A similar phenomenon has previously been observed with another Cre that is expressed during meiosis: Sycp-1-Cre. This second example of LoxP inhibition in trans reinforces the conclusion that certain meiotically expressed Cre alleles can initiate transvection in mammals. However, unlike the previous example, we find that the inhibition of LoxP recombination is not due to DNA methylation. In addition, we demonstrate that LoxP inhibition is easily alleviated by adding an extra generation to our crossing scheme. This finding confirms that the LoxP sites are inhibited via an epigenetic mechanism, and provides a method for the use of other Cre transgenes associated with a similar LoxP inhibition event. Furthermore, the abrogation of LoxP inhibition by the simple addition of an extra generation in our crosses establishes a unique mouse system for future studies to uncover the mechanism of transvection in mammals.