Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The choice that a solid system “makes” when adopting a crystal structure (stable or metastable) is ultimately governed by the interactions between electrons forming chemical bonds. Here we analyze six prototypical binary transition metal compounds and shed light on the connection between Mott physics and the behavior of the energy as a function of the spatial arrangement of the atoms in these systems. Remarkably, we find that the main qualitative features of this complex behavior in the Mott phase of these systems can be traced back to the fact that the strong
d -electron correlations influence substantially the charge transfer mechanism, which, in turn, controls the electrostatic interactions. This result advances our understanding of the influence of strong correlations on the crystal structure, opens a new avenue for extending structure prediction methodologies to strongly correlated materials, and paves the way for predicting and studying metastability and polymorphism in these systems.