skip to main content

Search for: All records

Creators/Authors contains: "Lee, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The galaxy cluster A746 (z= 0.214), featuring a double radio relic system, two isolated radio relics, a possible radio halo, disturbed V-shaped X-ray emission, and intricate galaxy distributions, is a unique and complex merging system. We present a weak-lensing analysis of A746 based on wide-field imaging data from Subaru/Hyper Suprime-Cam observations. The mass distribution is characterized by a main peak, which coincides with the center of the X-ray emission. At this main peak, we detect two extensions toward the north and west tracing the cluster galaxy and X-ray distributions. Despite the ongoing merger, our estimate of the A746 global massM500= 4.4 ± 1.0 × 1014Mis consistent with the previous results from Sunyaev-Zel'dovich and X-ray observations. We conclude that reconciling the distributions of mass, galaxies, and intracluster medium with the double radio relic system and other radio features remains challenging.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
    Free, publicly-accessible full text available July 11, 2024
  4. Abstract Background West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. Methods We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. Results Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. Conclusions Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases). Graphical Abstract 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Free, publicly-accessible full text available December 1, 2024
  6. Declines in seasonal sea ice in polar regions have stimulated projections of how primary production has shifted in response to greater light penetration over a longer open water season. Despite the limitations of remotely sensed observations in an often cloudy environment, remote sensing data provide strong indications that surface chlorophyll biomass has increased (since 2000) as sea ice has declined in the Pacific Arctic region. We present here shipboard measurements of chlorophyll-a that have been made annually in July since 2000 from the Distributed Biological Observatory (DBO) stations in the Bering Strait region. This time series as well as shipboard observations made in other months since the late 1980s implicate complexities that intrude on a simple expectation that, as open water periods increase, the production and biomass of phytoplankton will increase predictably. These shipboard observations indicate that there have not been sharp increases in chlorophyll-a, for either maxima observed in the water column or integrated over the whole water column, at the DBO stations over a time-series extending for as long as 20 years coinciding with seasonal sea ice declines. On the other hand, biomass may be increasing in other months: we provide a shipboard confirmation of a fall bloom in October as wind mixing introduced nutrients back into the upper water column. The productive DBO stations may be at a high enough production already that additional enhancements in chlorophyll-a biomass should not be expected, but our time-series record does not exclude the possibility that additional enhanced production may be present in other areas outside the DBO station grid. These findings may also reflect limitations imposed by nutrient cycling and water column structure. The increasing freshwater component of waters flowing through the Bering Strait is likely associated with increased stratification that limits the potential change in biological production associated with decreases in seasonal sea ice persistence. 
    more » « less
  7. Doi, Hideyuki (Ed.)
    A large volume of freshwater is incorporated in the relatively fresh (salinity ~32–33) Pacific Ocean waters that are transported north through the Bering Strait relative to deep Atlantic salinity in the Arctic Ocean (salinity ~34.8). These freshened waters help maintain the halocline that separates cold Arctic surface waters from warmer Arctic Ocean waters at depth. The stable oxygen isotope composition of the Bering Sea contribution to the upper Arctic Ocean halocline was established as early as the late 1980’s as having a δ 18 O V - SMOW value of approximately -1.1‰. More recent data indicates a shift to an isotopic composition that is more depleted in 18 O (mean δ 18 O value ~-1.5‰). This shift is supported by a data synthesis of >1400 water samples (salinity from 32.5 to 33.5) from the northern Bering and Chukchi seas, from the years 1987–2020, which show significant year-to-year, seasonal and regional variability. This change in the oxygen isotope composition of water in the upper halocline is consistent with observations of added freshwater in the Canada Basin, and mooring-based estimates of increased freshwater inflows through Bering Strait. Here, we use this isotopic time-series as an independent means of estimating freshwater flux changes through the Bering Strait. We employed a simple end-member mixing model that requires that the volume of freshwater (including runoff and other meteoric water, but not sea ice melt) flowing through Bering Strait has increased by ~40% over the past two decades to account for a change in the isotopic composition of the 33.1 salinity water from a δ 18 O value of approximately -1.1‰ to a mean of -1.5‰. This freshwater flux change is comparable with independent published measurements made from mooring arrays in the Bering Strait (freshwater fluxes rising from 2000–2500 km 3 in 2001 to 3000–3500 km 3 in 2011). 
    more » « less
  8. A 2,000 year-long oceanographic history, in sub-centennial resolution, from a Canadian Beaufort Sea continental shelf site (60meters water depth) near the Mackenzie River outlet is reconstructed from ostracode and foraminifera faunal assemblages, shell stable isotopes (delta 18O, delta 13C) and sediment biogenic silica. The chronology of three sediment cores making up the composite section was established using 137Cs and 210Pb dating for the most recent 150 years and combined with linear interpolation of radiocarbon dates from bivalve shells and foraminifera tests.Continuous centimeter-sampling of the multicore and high-resolution sampling of a gravity and piston core yielded a time-averaged faunal record of every approximately 40 years from 0 to 1850 CE and every approximately 24 years from 1850 to 2013 CE. Proxy records were consistent with temperature oscillations and related changes in organic carbon cycling associated with the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Abundance changes in dominant microfossil species, such as the ostracode Paracyprideis pseudopunctillata and agglutinated foraminifers Spiroplectammina biformis and S. earlandi, are used as indicators of less saline, and possibly corrosive/turbid bottom conditions associated with the MCA (approximately 800 to 1200 CE) and the most recent approximately 60 years (1950–2013). During these periods, pronounced fluctuations in these species suggest that prolonged seasonal sea-ice melting, changes in riverine inputs and sediment dynamics affected the benthic environment. Taxa analyzed for stable oxygen isotope composition of carbonates show the lowest delta 18O values during intervals within the MCA and the highest during the late LIA, which is consistent with a 1 degree to 2 degree C cooling of bottom waters. Faunal and isotopic changes during the cooler LIA (1300 to 1850 CE) are most apparent at approximately 1500 to 1850 CE and are particularly pronounced during 1850 to approximately 1900 CE, with an approximate 0.5 per mil increase in delta 18O values of carbonates from median values in the analyzed taxa. This very cold 50-year period suggests that enhanced summer sea ice suppressed productivity,which is indicated by low sediment biogenic silica values and lower delta 13C values in analyzed species. From 1900CE to present, declines in calcareous faunal assemblages and changes in dominant species (Cassidulina reniforme and P. pseudopunctillata) are associated with less hospitable bottom waters, indicated by a peak in agglutinated foraminifera from 1950 to 1990 CE.

    more » « less
  9. Li, Delei (Ed.)
    Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production. 
    more » « less