skip to main content

Search for: All records

Creators/Authors contains: "Lee, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Li, Delei (Ed.)
    Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determinemore »whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production.« less
    Free, publicly-accessible full text available July 8, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Young, Vincent B. (Ed.)
    ABSTRACT Mosquito larvae encounter diverse assemblages of bacteria (i.e., “microbiota”) and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats.more »Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus , is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control.« less
    Free, publicly-accessible full text available October 27, 2022
  4. Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America. Transmitted by direct contact and by several biting insect species, this disease results in quarantines and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in geographic distributions of vectors and the viruses they transmit, there is considerable need to improve understanding of relationships among environmental drivers and patterns of disease occurrence. Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are increasingly relied upon to disentangle complex relationships governing disease. We used a big data model integration approach combined with machine learningmore »to estimate the potential geographic range of VS across the continental United States (CONUS) under long-term mean climate conditions over the past 30 years. The current extent of VS is confined to the western portion of the US and is related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates the importance of current processes-based parameters and identifies regions where uncertainty is likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS using climate change projections selected from CMIP5 climate models that most realistically simulate seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas of the current potential range of VS and expanded the range north and east. We expect that the heterogeneous impacts of climate change across the CONUS will be exacerbated with additional changes in land use and land cover affecting biodiversity and hydrological cycles that are connected to the ecology of insect vectors involved in VS transmission.« less
    Free, publicly-accessible full text available November 1, 2022
  5. Mancinelli, Giorgio (Ed.)
    The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus ( Odobenus rosmarus divergens ). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 andmore »2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes ( δ 15 N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species.« less
    Free, publicly-accessible full text available August 19, 2022
  6. Frontalini, Fabrizio (Ed.)
    Ostracoda (bivalved Crustacea) comprise a significant part of the benthic meiofauna in the Pacific-Arctic region, including more than 50 species, many with identifiable ecological tolerances. These species hold potential as useful indicators of past and future ecosystem changes. In this study, we examined benthic ostracodes from nearly 300 surface sediment samples, >34,000 specimens, from three regions—the northern Bering, Chukchi and Beaufort Seas—to establish species’ ecology and distribution. Samples were collected during various sampling programs from 1970 through 2018 on the continental shelves at 20 to ~100m water depth. Ordination analyses using species’ relative frequencies identified six species, Normanicythere leioderma ,more »Sarsicytheridea bradii , Paracyprideis pseudopunctillata , Semicytherura complanata , Schizocythere ikeyai , and Munseyella mananensis , as having diagnostic habitat ranges in bottom water temperatures, salinities, sediment substrates and/or food sources. Species relative abundances and distributions can be used to infer past bottom environmental conditions in sediment archives for paleo-reconstructions and to characterize potential changes in Pacific-Arctic ecosystems in future sampling studies. Statistical analyses further showed ostracode assemblages grouped by the summer water masses influencing the area. Offshore-to-nearshore transects of samples across different water masses showed that complex water mass characteristics, such as bottom temperature, productivity, as well as sediment texture, influenced the relative frequencies of ostracode species over small spatial scales. On the larger biogeographic scale, synoptic ordination analyses showed dominant species— N . leioderma (Bering Sea), P . pseudopunctillata (offshore Chukchi and Beaufort Seas), and S . bradii (all regions)—remained fairly constant over recent decades. However, during 2013–2018, northern Pacific species M . mananensis and S . ikeyai increased in abundance by small but significant proportions in the Chukchi Sea region compared to earlier years. It is yet unclear if these assemblage changes signify a meiofaunal response to changing water mass properties and if this trend will continue in the future. Our new ecological data on ostracode species and biogeography suggest these hypotheses can be tested with future benthic monitoring efforts.« less
  7. CONTEXT Engineering education is an interdisciplinary research field where scholars are commonly embedded within the context they study. Engineering Education Scholars (EES), individuals who define themselves by having expertise associated with both engineering education research and practice, inhabit an array of academic positions, depending on their priorities, interests, and desired impact. These positions include, but are not limited to, traditional tenure-track faculty positions, professional teaching or research positions, and positions within teaching and learning centers or other centers. EES also work in diverse institutional contexts, including engineering disciplinary departments, first-year programs, and engineering education departments, which further vary their roles.more »PURPOSE OR GOAL The purpose of this preliminary research study is to better understand the roles and responsibilities of early-career EES. This knowledge will enable PhD programs to better prepare engineering education graduates to more intentionally seek positions, which is especially important given the growing number of engineering education PhD programs. We address our purpose by exploring the following research question: How can we describe the diversity of academic or faculty roles early-career EES undertake? APPROACH OR METHODOLOGY/METHODS We implemented an explanatory sequential mixed-methods study starting with a survey (n=59) to better understand the strategic actions of United States-based early-career EES. We used a clustering technique to identify clusters of participants based on these actions (e.g., teaching focused priorities, research goals). We subsequently recruited 14 survey participants, representing each of the main clusters, to participate in semi-structured interviews. Through the interviews, we sought to gain a more nuanced understanding of each participant’s actions in the contexts of their roles and responsibilities. We analyzed each interview transcript to develop memos providing an overview of each early-career EES role description and then used a cross case analysis where the unit of analysis was a cluster. ACTUAL OUTCOMES Five main clusters were identified through our analysis, with three representing primarily research-focused day-to-day responsibilities and two representing primarily teaching-focused day-to-day responsibilities. The difference between the clusters was influenced by the institutional context and the areas in which EES selected to focus their roles and responsibilities. These results add to our understanding of how early-career EES enact their roles within different institutional contexts and positions. CONCLUSIONS/RECOMMENDATIONS/SUMMARY This work can be used by graduate programs around the world to better prepare their engineering education graduates for obtaining positions that align with their goals and interests. Further, we expect this work to provide insight to institutions so that they can provide the support and resources to enable EES to reach their desired impact within their positions.« less
  8. Abstract The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes in stars and compact objects since the epoch of recombination. Measuring the EBL density directly is challenging, especially in the near-to-far-infrared wave band, mainly due to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits on the EBL by studying the effects of gamma-ray absorption in the very high energy (VHE: >100 GeV) spectra of distant blazars. The High Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is one of the few instruments sensitive to gamma rays with energies abovemore »10 TeV. This offers the opportunity to probe the EBL in the near/mid-IR region: λ = 1–100 μ m. In this study, we fit physically motivated emission models to Fermi-LAT gigaelectronvolt data to extrapolate the intrinsic teraelectronvolt spectra of blazars. We then simulate a large number of absorbed spectra for different randomly generated EBL model shapes and calculate Bayesian credible bands in the EBL intensity space by comparing and testing the agreement between the absorbed spectra and HAWC extragalactic observations of two blazars. The resulting bands are in agreement with current EBL lower and upper limits, showing a downward trend toward higher wavelength values λ > 10 μ m also observed in previous measurements.« less
    Free, publicly-accessible full text available July 1, 2023