skip to main content

Search for: All records

Creators/Authors contains: "Lee, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, amore »teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context.« less
    Free, publicly-accessible full text available July 26, 2022
  4. Free, publicly-accessible full text available December 16, 2022
  5. Abstract Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuOmore »2 thin films on (110)-oriented TiO 2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.« less
    Free, publicly-accessible full text available December 1, 2022
  6. Bartoli, A ; Fusiello, A (Ed.)
    We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with the standard DiMP classifier. Our tracker RLT-DiMP improves SuperDiMP in the follow- ing three aspects: (1) Uncertainty reduction using random erasing: To make our model robust, we exploit an agreement from multiple im- ages after erasing random small rectangular areas as a certainty. And then, we correct the tracking state of our model accordingly. (2) Ran- dom search with spatio-temporal constraints: we propose a robust ran- dommore »search method with a score penalty applied to prevent the prob- lem of sudden detection at a distance. (3) Background augmentation for more discriminative feature learning: We augment various backgrounds that are not included in the search area to train a more robust model in the background clutter. In experiments on the VOT-LT2020 bench- mark dataset, the proposed method achieves comparable performance to the state-of-the-art long-term trackers. The source code is available at: https://github.com/bismex/RLT-DIMP.« less
  7. Aliasing refers to the phenomenon that high frequency signals degenerate into com- pletely different ones after sampling. It arises as a problem in the context of deep learning as downsampling layers are widely adopted in deep architectures to reduce parameters and computation. The standard solution is to apply a low-pass filter (e.g., Gaussian blur) before downsampling [37]. However, it can be suboptimal to apply the same filter across the entire content, as the frequency of feature maps can vary across both spatial locations and feature channels. To tackle this, we propose an adaptive content-aware low-pass filtering layer, which predicts separatemore »filter weights for each spatial location and chan- nel group of the input feature maps. We investigate the effectiveness and generalization of the proposed method across multiple tasks including ImageNet classification, COCO instance segmentation, and Cityscapes semantic segmentation. Qualitative and quanti- tative results demonstrate that our approach effectively adapts to the different feature frequencies to avoid aliasing while preserving useful information for recognition. Code is available at https://maureenzou.github.io/ddac/.« less